9 research outputs found

    Disease Progression in MRL/lpr Lupus-Prone Mice Is Reduced by NCS 613, a Specific Cyclic Nucleotide Phosphodiesterase Type 4 (PDE4) Inhibitor

    Get PDF
    Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFα secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC50 = 1.4 nM) than the other subtypes (PDE4A, IC50 = 44 nM; PDE4B, IC50 = 48 nM; and PDE4D, IC50 = 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (Ki = 148 nM) in comparison to rolipram (Ki = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFα secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease

    PloS one

    Get PDF
    Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFalpha secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC(50) = 1.4 nM) than the other subtypes (PDE4A, IC(50) = 44 nM; PDE4B, IC(50) = 48 nM; and PDE4D, IC(50) = 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (K(i) = 148 nM) in comparison to rolipram (K(i) = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFalpha secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease

    PloS one

    Get PDF
    The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs), PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis

    Concerted Regulation of cGMP and cAMP Phosphodiesterases in Early Cardiac Hypertrophy Induced by Angiotensin II

    Get PDF
    Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored

    J Med Chem

    No full text
    Among a small series of tested N-acylhydrazones (NAHs), the compound 8a was selected as a selective submicromolar phosphodiesterase-4 (PDE4) inhibitor associated with anti-TNF-alpha properties measured both in vitro and in vivo. The recognition pattern of compound 8a was elucidated through molecular modeling studies based on the knowledge of the 3D-structure of zardaverine, a PDE4 inhibitor resembling the structure of 8a, cocrystallized with the PDE4. Based on further conformational analysis dealing with N-methyl-NAHs, a quinazoline derivative (19) was designed as a conformationally constrained NAH analogue and showed similar in vitro pharmacological profile, compared with 8a. In addition 19 was found active when tested orally in LPS-evoked airway hyperreactivity and fully confirmed the working hypothesis supporting this work

    Design, Synthesis, and Pharmacological Evaluation of <i>N</i>‑Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase‑4 Inhibitors

    No full text
    Among a small series of tested <i>N</i>-acylhydrazones (NAHs), the compound <b>8a</b> was selected as a selective submicromolar phosphodiesterase-4 (PDE4) inhibitor associated with anti-TNF-α properties measured both <i>in vitro</i> and <i>in vivo</i>. The recognition pattern of compound <b>8a</b> was elucidated through molecular modeling studies based on the knowledge of the 3D-structure of zardaverine, a PDE4 inhibitor resembling the structure of <b>8a</b>, cocrystallized with the PDE4. Based on further conformational analysis dealing with <i>N</i>-methyl-NAHs, a quinazoline derivative (<b>19</b>) was designed as a conformationally constrained NAH analogue and showed similar <i>in vitro</i> pharmacological profile, compared with <b>8a</b>. In addition <b>19</b> was found active when tested orally in LPS-evoked airway hyperreactivity and fully confirmed the working hypothesis supporting this work
    corecore