12 research outputs found

    1,3-diglyceride-rich edible oils from glycerolysis of vegetable oils: Effect of the catalyst basic properties

    Get PDF
    Vegetable edible oils enriched in diglycerides were obtained by glycerolysis under heterogeneous catalysis conditions using MgO as catalyst. These oils contain up to 32% of the 1,3-diglyceride isomer, which is believed to present unique nutritional properties to prevent obesity, compared to triglycerides or 1,2-diglycerides. The base site density and strength distribution of the different sites (weak, medium and strong) present on MgO as well as the initial oil conversion rate depend on the preparation procedure. The density of medium-strength sites increases upon increasing the severity of the preparation procedure in the range of 673-873K in parallel to the initial oil conversion rate. These results confirm that medium-strength base sites promote the kinetically relevant reaction steps involved in the glycerolysis of vegetable oils.Fil: Dosso, Liza Ainalen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    Catalytic upgrading of carbohydrates: obtainment of liquid fuels based on ketones and alcohols

    No full text
    Fil: Luggren, Pablo Jorge. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina.En esta tesis se investigó la conversión en fase gaseosa de 2-hexanol, una molécula modelo de la conversión primaria de azúcares, sobre óxidos mixtos Cu-Mı-Mıı (Mı, Mıı: Mg²⁺, Al³⁺, Ce⁴⁺) con diferentes contenidos de cobre (0,3-61,2 %), para obtener compuestos de mayor peso molecular con aplicación como combustibles líquidos para el transporte. Los catalizadores se prepararon por coprecipitación y se caracterizaron por diversas técnicas: superficie específica BET, XRD, TPD de CO₂, TPR y descomposición de N₂O. El proceso catalítico bifuncional metal-básico involucra etapas consecutivas de deshidrogenación, formación de enlaces C-C, deshidratación e hidrogenación. Las partículas de Cuº promueven las etapas de deshidrogenación e hidrogenación, mientras que los sitios ácido-básicos, pares Mı(Mıı)-O, participan en la formación de enlaces C-C. Se obtuvieron rendimientos de hasta el 87 % para compuestos en el rango de C9 a C24, de los cuales ≈80 % son adecuados para utilizarse como combustibles de aviones y el resto como sustitutos de diésel. Los productos C9-C24 son una mezcla hidrofóbica de cetonas, alcoholes e hidrocarburos con un peso molecular promedio de 160-200 g/mol y una relación atómica O/C de ≈0,04. Un camino de reacción que lleva a la formación de productos con número impar de átomo de carbono (C9, C15 y C21) se postuló en contraste con el camino convencional de condensación aldólica hacia productos con número par (C12, C18 y C24). El contenido de Cu afecta notoriamente las propiedades básicas del catalizador, la dispersión metálica, la actividad, la distribución de productos y la etapa limitante de la velocidad de reacción.In this thesis, the gas-phase conversion of 2-hexanol, a model molecule of the primary conversion of sugars, was investigated on Cu-Mı-Mıı mixed oxides (Mı, Mıı: Mg²⁺, Al³⁺, Ce⁴⁺) with different copper content (0.3-61.2 %) to obtain higher molecular weight compounds of application as liquid transportation fuels. Catalysts were prepared by coprecipitation and characterized by several techniques such as BET surface area, XRD, TPD of CO₂, TPR and N₂O decomposition. The bifunctional metal-base catalytic process occurs through a series of sequential steps comprising dehydrogenation, C-C coupling, dehydration and hydrogenation reactions. Nano-sized Cuº particles promote dehydrogenation and hydrogenation steps whereas acid-base sites provided by Mı(Mıı)-O pairs participate in the C-C coupling reaction. Yields of up to 91 % were obtained for branched C9-C24 compounds, ≈80 % of which were suitable as jet fuels and the rest as diesel substitutes. This product pool was a hydrophobic mixture of ketones, alcohols and hydrocarbons with 160-200 g/mol average molecular weight and an O/C atomic ratio as low as 0.04. A reaction pathway leading to formation of odd carbon atom number products (C9, C15 and C21) was postulated in contrast to the conventional aldol condensation pathway toward even carbon atom number products (C12, C18 and C24). The Cu content notoriously affects the catalyst basicity, metal dispersion, activity, product distribution and rate-limiting step.Consejo Nacional de Investigaciones Científicas y TécnicasAgencia Nacional de Promoción Científica y TecnológicaUniversidad Nacional del Litora

    Deactivation of Cu–Mg–Al mixed oxide catalysts for liquid transportation fuel synthesis from biomass-derived resources

    No full text
    A “platform molecule” (2-hexanol) obtained from the primary conversion of sugars was upgraded to liquid transportation fuel precursors under gas phase conditions at 573 K and 101.3 kPa. Reaction was promoted by Cu-Mg-Al mixed oxides with different copper loading (0.3–61.2%) and a Mg/Al = 1.5 (molar ratio). Products were mainly low oxygen content C9-C24 oxygenates and hydrocarbons. The product pool average molecular weight and the oxygenates/hydrocarbons ratio increase with the catalyst copper loading, but the latter might be diminished by augmenting the contact time. A slow catalyst deactivation process occurs in the first 2 h of reaction. Temperature-programmed oxidation, BET surface are measurements and X-ray photoelectron and Auger electron spectroscopies of the spent catalysts indicated that the main reasons for the activity decay during reaction are carbon deposition on the active sites and, to a lesser degree, partial oxidation of the surface copper particles. Oxygenates (reactant or products) are the chemical species responsible for deactivation. The initial deactivation rate (rd0) depends on the copper content and contact time. On catalysts with low Cu content, rd0 is higher at short contact times, which is consistent with coke formed directly from the reactant. Contrarily, at high Cu loadings rd0 increases with contact time and parallels formation of heavy unsaturated oxygenates. Oxidation/reduction/catalytic test cycles of spent Cu-Mg-Al mixed oxides were implemented to explore catalyst reusability.Fil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    Liquid transportation fuels from biomass-derived oxygenates: Gas-phase 2-hexanol upgrading on Cu-based mixed oxides

    No full text
    The gas-phase upgrading of 2-hexanol, a model molecule of the primary conversion of sugars, toward higher molecular weight compounds of application as liquid transportation fuels was investigated on Cu-MI-MII mixed oxides (MI, MII: Mg2+, Al3+, Ce4+) at 573K and 101.3 kPa. Catalysts were prepared by coprecipitation and characterized by several techniques such as BET surface area, XRD, TPD of CO2 and NH3, TPR and N2O decomposition. The bifunctional metal-base catalytic process occurs through a series of sequential steps comprising dehydrogenation, C-C coupling, dehydration and hydrogenation reactions. Nano-sized Cu0 particles promote dehydrogenation and hydrogenation steps whereas acid-base sites provided by MI(MII)-O pairs participate in the C-C coupling reaction. In general, main products were C9-C12 compounds that represented ~60% of the product pool. Branched C9-C24 compounds such as ketones, alcohols and alkanes were obtained with yields of up to 91% on a Cu-Mg-Al mixed oxide with 8wt.% Cu (catalyst 8.0CuMgAl). This catalyst presented well dispersed Cu0 particles and a high number of base sites with moderate basic properties as well as a low number of acid sites. The rate-limiting step of the bifunctional process leading to C9-C24 products on catalyst 8.0CuMgAl was the metal-promoted hydrogenation step, but the reaction can be controlled by the C-C bond formation step on less basic catalysts. By carrying out experiments under different reaction atmospheres (N2 or H2) and at different contact times, a reaction pathway leading to formation of odd carbon atom number products (C9, C15 and C21) is postulated in contrast to the conventional aldol condensation pathway toward even carbon atom number products (C12, C18 and C24). The former prevails under conditions at which the catalyst surface is deprived of hydrogen atoms.Fil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    Light olefins from biomass-derived butyric acid by tandem deoxygenation reactions

    No full text
    The feasibility of using a series of Zn-Zr mixed oxides for the gas-phase production of light olefins from butyric acid, a platform molecule derived from biomass processing, was investigated. These materials with Zn/Zr molar ratios of 0.11–0.66 were prepared by incipient wetness impregnation of Zn on Zr(OH)4 and characterized by BET, XRD and CO2 and NH3 TPD. At full butyric acid conversion conditions, a range of C2-C7 olefins was obtained. The molecular weight of the olefin pool as well as the total olefin yield depend on the catalyst composition and experimental conditions. The catalyst acid-base properties can be tuned for optimal olefin yield by generating a high number of Zn-O-Zr species and oxygen vacancies resulting from incorporation of Zn2+ to the ZrO2 lattice. The best olefin yield coincides with the catalyst showing the highest acid site number and moderate basic properties. Also, the reaction temperature and reactor contact time were varied to improve the olefin yield. A total olefin yield of 60.7% was obtained with a catalyst having 11.1 wt% Zn (Zn/Zr=0.25) at 723 K and 835 h g cat./mol. Ethylene (52%) and isobutene (33%) were the main components of the olefin fraction, the other 15% being pentene, isohexene and heptene. The olefin yield can be further improved to 65.8% by increasing the contact time to 1500 h g cat./mol. Butyric acid transformation proceeds with the intermediate formation of different ketones (heptanone, pentanone and acetone), each of which gives rise to a particular olefin. Isobutene forms through tandem butyric acid ketonization/C-C bond rupture by McLafferty rearrangement/aldol condensation/breaking of the aldol adduct reactions. Ethylene is generated during the McLafferty step. The pathways toward other olefins may involve deoxygenation steps such as reduction of unsaturated bonds by in-situ generated hydrogen species, followed by dehydration. Acetic and propionic acids, formed in minor amounts, participate in further tandem sequences. No catalyst deactivation was observed during standard and extended catalytic tests because water co-feeding and hydrogen generation prevent heavy product formation and active site loss.Fil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Dosso, Liza Ainalen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    Upgrading of biomass-derived 2-hexanol to liquid transportation fuels on Cu-Mg-Al mixed oxides. Effect of Cu content

    No full text
    The gas-phase synthesis of high molecular weight compounds of application as liquid transportation fuels from 2-hexanol was studied on Cu-Mg-Al mixed oxides with different copper content (0.3-61.2%) and a Mg/Al =1.5 molar ratio. Catalysts were prepared by coprecipitation and characterized by several techniques such as BET surface area, XRD, TPD of CO2, TPR and N2O decomposition. Yields of up to 87% were obtained for compounds in the C9-C24 range, 80% of which were suitable as jet fuels and the rest as diesel substitutes. This product pool was a hydrophobic mixture of ketones, alcohols and hydrocarbons with 160-200 g/mol average molecular weight and an O/C atomic ratio as low as 0.04. Because low copper content catalysts are hard to reduce, on these materials the reaction occurs via a base-catalyzed mechanism involving consecutive dehydrogenation, C-C bond formation, dehydration and hydrogenation steps, that forms mainly even carbon atom number products. Partially reduced Cun+ atoms contribute to promote a distinct pathway toward odd products. In contrast, on high copper content oxides the reaction yields similar amounts of even and odd products and proceeds by a bifunctional Cu0-base mechanism in which the C-C coupling is rate-limiting.Fil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentin

    Upgrading of diols by gas-phase dehydrogenation and dehydration reactions on bifunctional Cu-based oxides

    Get PDF
    Biomass-derived short chain polyols can be transformed in valuable oxygenates used as building blocks. The gas phase conversion of a model molecule of 1,3-diols (1,3-butanediol) was studied on bifunctional Cu-Mg, Cu-Al and Cu-Mg-Al mixed oxide catalysts that combine surface Cu0 particles and acid-base properties. A series of ZCuMgAl catalysts (Z=0.3-61.2 wt.% Cu, Mg/Al=1.5 molar ratio) was prepared by coprecipitation and thoroughly characterized by several techniques such as BET surface area, TPR-N2O chemisorption, XRD and TPD of CO2. The ZCuMgAl catalysts promote the upgrading of the diol by a series of dehydrogenation and/or dehydration reactions proceeding at reaction rates that depend on the copper content (Z). The overall activity increases linearly with the amount of surface Cu0 species thereby confirming participation of metallic sites in rate-limiting steps. Besides, surface Cu0 sites favor the reaction pathway toward 1,3-butanediol dehydrogenation. Thus, the dehydrogenation/dehydration selectivity ratio increases with Z as a result of the enhanced amount of exposed Cu0 particles. ZCuMgAl catalysts with Z 8wt.% are more active and yield valuable multifunctional C4 oxygenates such as hydroxyketones and to a lesser extent, unsaturated alcohols and ketones. A strongly basic Cu-Mg catalyst promotes the C-C bond cleavage reaction giving short carbon chain oxygenates at low rates; an acidic Cu-Al catalyst converts the diol into the C4 saturated ketone and olefins.Fil: Torresi, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Diez, Veronica Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentin

    Conversion of Biomass-Derived 2-Hexanol to Liquid Transportation Fuels: Study of the Reaction Mechanism on Cu–Mg–Al Mixed Oxides

    Get PDF
    The reaction mechanism of 2-hexanol conversion to high molecular weight compounds to be used as liquid transportation fuels was studied on MgO, Cu/SiO2 and a bifunctional Cu-Mg-Al mixed oxide with 8 wt. % Cu (catalyst 8.0CuMgAl). Catalysts were characterized by several physical and spectroscopic techniques. The evolution of 2-hexanol conversion and yields in inert (N2) and reducing (H2) reaction atmospheres at different contact times (W/F0) was investigated, which allowed distinguishing between primary and secondary products. In H2, at W/F0 = 500 g h/mol, the bifunctional 8.0CuMgAl catalyst yielded more than 90 % of branched C9-C24 oxygenates and hydrocarbons that were obtained via sequential steps comprising dehydrogenation, C-C coupling, dehydration and hydrogenation reactions. The metal-base bifunctional nature of this reaction network on 8.0CuMgAl was elucidated: nano-sized Cu0 particles promote dehydrogenation and hydrogenation steps whereas Mg-O pairs participate mainly in C-C coupling reactions. The product distribution depended on the reaction atmosphere. In H2, the reaction pathways leading to formation of even carbon atom number products (C12, C18 and C24) were favored and hydrocarbons were the main products at high conversion levels. In N2, significant amounts of odd carbon atom number products (C9, C15 and C21) were formed with a higher contribution of oxygenates to the product pool.Fil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentin

    Conversion of diols by dehydrogenation and dehydration reactions on silica-supported copper catalysts

    No full text
    The gas-phase conversion of a 1,3-polyol (1,3-butanediol) containing primary and secondary OH functions was studied on a series of copper-silica catalysts, ZCuSiO2 (Z = 1-25 wt.% Cu), and thoroughly characterized by several techniques such as BET surface area, TPR, XRD, N2O chemisorption, and UV-vis-DRS. The physicochemical properties of the ZCuSiO 2 catalysts depended on whether the metal loading was above or below the copper monolayer surface coverage (Z = 13.5 wt.% Cu). Copper species presenting different degrees of interaction with the silica support were detected. At low Z values Cu0 dispersion was high (D ≈ 40%) due to a predominant contribution of nano-sized Cu species (3 nm) which are difficult to reduce, but for Z > 13.5 wt.%, D abruptly dropped to 3-8% because of formation of larger tridimensional Cu clustered species (30 nm) that reduced at lower temperatures because of a decreased copper-silica interaction. On ZCuSiO2 catalysts, dehydrogenation of the 1,3-butanediol secondary OH function prevailed over that of the primary one and therefore valuable ketones were the main reaction products. Consecutively to dehydrogenation, dehydration and hydrogenation reactions also took place. Products of the tandem reaction were the β-hydroxy ketone (4-hydroxy-2-butanone), the α,β- unsaturated ketone (methyl vinyl ketone) and the saturated ketone (methyl ethyl ketone). A direct 1,3-butanediol dehydration pathway toward methyl ethyl ketone was also found. Reaction pathways were strongly dependent on the Cu loading and therefore on the kind of Cu species (isolated or clustered). When compared at similar conversion levels, selectivity to the dehydrogenation product 4-hydroxy-2-butanone increased with Z suggesting that on large Cu0 particles 4-hydroxy-2-butanone was released to the gas phase before being converted in consecutive steps. On the contrary, on highly dispersed Cu 0 crystals of low Cu loading catalysts, 1,3-butanediol was readily dehydrated giving the saturated ketone. Kinetically relevant reaction steps of 1,3-butanediol conversion by dehydrogenation and dehydration were promoted on Cu0 sites. Dehydration of the intermediate 4-hydroxy-2-butanone also occurred on Cu0 sites. Turnover rates were constant on Cu0 nano particles and slightly higher on clustered species.Fil: Torresi, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Diez, Veronica Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin

    Gas-phase conversion of 1,3-butanediol on single acid-base and Cu-promoted oxides

    No full text
    The gas-phase conversion of 1,3-diols was studied on catalysts containing different active sites and using 1,3-butanediol as a model molecule. Transformation of the diol primary and/or secondary OH groups by dehydration and dehydrogenation reactions yields valuable oxygenates combining OH and CC, OH and CO or CC and CO functions, along with other compounds. A series of single oxides with different acid-base properties, copper-silica and copper-single oxide catalysts were prepared by several methods and characterized by TPR, XRD and N2O chemisorption. Acid-base oxides transform 1,3-butanediol at low rates. Oxide electronegativity determines the main reaction pathway: acidic oxides promote 1,3-butanediol dehydration toward unsaturated alcohols and olefins, whereas basic oxides dehydrogenate-dehydrate the diol toward the unsaturated ketone. The effect of Cu0 in monofunctional copper-silica, or bifunctional copper-acid or copper-base catalysts, is to increase the reaction rate and to shift the reaction pathway toward 1,3-butanediol dehydrogenation. The metal dispersion depends on the preparation method by impregnation, ion exchange or co-precipitation. Small Cu0 particles strongly adsorb reactant and products allowing consecutive reactions to take place after initial dehydrogenation. In bifunctional catalysts, the role of the acid or base sites is to promote consecutive dehydration-hydrogenation or CC bond cleavage reactions, respectively.Fil: Diez, Veronica Karina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Torresi, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Luggren, Pablo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Ferretti, Cristián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentin
    corecore