3 research outputs found

    A GATE-based Monte Carlo simulation of a dual-layer pixelized gadolinium oxyorthosilicate (GSO) detector performance and response for micro PET scanner

    Get PDF
    The purpose of this study was to simulate the GSO detector of a micro PET using GATE simulation platform. The performance and responses of the simulated GSO detector assembly were evaluated by comparing the simulated data to the experimental and XCOM data to validate the simulation platform and procedure. Based on NEMA NU-4 2008 protocols, the performance of GSO detector in terms of sensitivity was simulated and compared to the experimental data. Similarly, the GSO detector response to photons interaction was simulated and compared against the XCOM data for absorbed intensity ratio in the GSO detector and survived intensity ratio in Pb blocks. Results showed that simulated and experimental sensitivities agreed well with R2 of 0.995 and two overlapping bands at 95% confidence. An agreement with R2 of 0.972 and 0.973 as well as with overlapping bands at 95% confidence was obtained in simulated and XCOM data for absorbed and survived intensity ratio in the GSO detector and Pb blocks, respectively. The observed agreements demonstrate the accuracy of the simulation method to mimic the behaviour of the GSO detector. The validated GATE algorithm for micro PET scanner is therefore recommended for simulation and optimisation of collimator design in further studies. Keywords: GATE simulation, Experimental data, XCOM data, GSO detector, micro PET. &nbsp

    Review of the Imaging Performance and the Current Status of the Cascade Gamma-Rays Coincidence Imagers

    Get PDF
    Various studies that have investigated the detection of gamma coincidence events have revealed that design factors and image reconstruction approaches dictate the spatial resolution, coincidence efficiency, and levels of statistical noise of the detection system. In the case of imaging, cascade gamma-ray coincidence (CGC) imagers coupled with collimated detectors offer promising values for both spatial resolution and coincidence efficiency. However, to date, no CGC imager with single or multiple collimated detectors has reported a performance level beyond 6.7 mm spatial resolution (FWHM) and 6.0 Ă—1ncidence efficiency. Given the recent developments and the current interests in high resolution and localization of an individual decaying nucleus, there is a need for CGC imagers with higher performance in terms of spatial resolution and efficiency. Therefore, deploying a CGC imager coupled with multiple collimated detectors may prove to be of value in nuclear imaging and probably in clinical application

    Evaluation of scatter suppression algorithm for X-ray exposure of soft tissue equivalent phantoms over nominal energy range using FLUKA code

    Get PDF
    Soft tissue imaging is heavily impaired by streaks and cupping effects associated with X-ray scatter. Quality of images from projection imaging may be improved by the use of enhanced anti-scatter grids’ designs with potency to reject significant scatter. However, optimization of grid characteristics requires investigation to improve diagnostic image quality. Transmitted scatter spatially distributed degrades images engendering need for effective scatter correction protocols. This study investigated the pre-scan scatter suppression algorithm for X-ray exposure of soft tissue equivalent phantoms over nominal energy range. Adipose tissue and polymethyl methacrylate phantoms of cross-sectional area (30 x 30) cm2 and of varying thickness from 2 to 8 cm in 1 cm increments were successively exposed using energy ranging between 20–50 kVp. Monte Carlo simulation based on FLUKA code and flair interface was used to generate an input file for execution. The source simulated five cycles of ten million photons each of annular X-ray photon beam of radius, r = 0.5 cm at fixed field of view (FOV) through anti-scatter grid on to gadolinium oxysulfide detector. The transmitted total, scatter and primary estimates were evaluated with and without grids over varying phantom thicknesses, energy and grid design features. The simulated and experimental results obtained were comparable and in agreement with previous literature. Pearson’s correlation coefficients for scatter fraction and scatter to primary ratio were 0.983 and 0.981, respectively. The strong correlation between simulation and experiment results indicated correctness in methodology and protocol. The algorithms and protocols in the simulation would be appropriate for designing grids with enhanced scatter rejection capabilities. Keywords: FLUKA code, Monte Carlo simulation, Scatter suppression algorithm, Scatter correction, X-ray imaging systems. &nbsp
    corecore