17 research outputs found

    Raman properties of various carbonaceous materials and their astrophysical implications

    Get PDF
    It is well known that a large number of celestial objects exhibit, in the range 3 to 12 micron, a family of emission features called unidentified infrared bands (UIR). They usually appear together and are associated with UV sources. Recently various authors have suggested that these features could be attributed to solid carbonaceous materials. Following this interest, a systematic analysis was performed of various types of amorphous carbon grains and polycyclic aromatic hydrocarbons (PAH), produced in lab. Updating results of Raman measurements performed on several carbonaceous materials, chosen according to their astrophysical interest, are presented. The measurements were made by means of a Jobin-Yvon monochromator HG2S and standard DC electronic. The line at 5145 A of an Ar+ laser was used as excitation source

    Synapsin I controls synaptic maturation of long-range projections in the lateral amygdala in a targeted selective fashion

    Get PDF
    The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA). We performed dual electrophysiological recordings of identified cells in juvenile and adult GAD67-GFP mice after independent stimulation of cortical and thalamic afferent systems. The results demonstrate that synaptic strengthening occurs during development at synapses projecting to LA principal neurons, but not interneurons. As synaptic strengthening underlies fear conditioning which depends, in turn, on presence and increasing expression of synapsin I, we tested if synapsin I contributes to synaptic strengthening during development. Interestingly, the physiological synaptic strengthening of cortical and thalamic synapses projecting to LA principal neurons was virtually abolished in synapsin I knockout mice, but not differences were observed in the excitatory projections to interneurons. Immunohistochemistry analysis showed that the presence of synapsin I is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. These results indicate that synapsin I is a key regulator of the maturation of synaptic connectivity in this brain region and that is expression is dependent on postsynaptic identity

    Synapsin I Controls Synaptic Maturation of Long-Range Projections in the Lateral Amygdala in a Targeted Selective Fashion

    Get PDF
    The amygdala, and more precisely its lateral nucleus, is thought to attribute emotional valence to external stimuli by generating long-term plasticity changes at long-range projections to principal cells. Aversive experience has also been shown to modify pre- and post-synaptic markers in the amygdala, suggesting their possible role in the structural organization of adult amygdala networks. Here, we focused on how the maturation of cortical and thalamic long-range projections occurs on principal neurons and interneurons in the lateral amygdala (LA). We performed dual electrophysiological recordings of identified cells in juvenile and adult GAD67-GFP mice after independent stimulation of cortical and thalamic afferent systems. The results demonstrate that synaptic strengthening occurs during development at synapses projecting to LA principal neurons, but not interneurons. As synaptic strengthening underlies fear conditioning which depends, in turn, on presence and increasing expression of synapsin I, we tested if synapsin I contributes to synaptic strengthening during development. Interestingly, the physiological synaptic strengthening of cortical and thalamic synapses projecting to LA principal neurons was virtually abolished in synapsin I knockout mice, but not differences were observed in the excitatory projections to interneurons. Immunohistochemistry analysis showed that the presence of synapsin I is restricted to excitatory contacts projecting to principal neurons in LA of adult mice. These results indicate that synapsin I is a key regulator of the maturation of synaptic connectivity in this brain region and that is expression is dependent on postsynaptic identity

    A study of the shielding gas influence on the laser beam welding of AA5083 Aluminium alloys by in-process spectroscopic investigation

    No full text
    In laser welding, the shielding gas is commonly used to stabilize the welding process, to improve welded joints features and to protect the welded seam against oxidization. Besides the type of shielding gas used, the nozzle parameters play an essential role. In fact, the chemical composition of the shielding gas and the flow geometry are key factors limiting the size of the plasma plume and its contamination by the surrounding atmosphere, and affecting the final quality of the welded joints. In this work, we present an experimental study on the complex physical phenomena occurring during the interaction between the plasma plume, the laser beam and the shielding gas by using an in-process spectroscopic investigation of the plasma plume characteristics under different operating conditions. A correlation was found between the spectral features and the formation of oxide layers on the surface of the welding seam, caused by defective gas shielding and by the vaporization of alloying elements. Experimental results have given useful indications for the development of innovative welding nozzle for application in laser welding of aluminium alloys

    Optical detection of conduction/keyhole mode transition in laser welding

    No full text
    We present an innovative real-time monitoring technique based on the correlation analysis of the plasma plume optical spectra generated during laser welding of Al alloys. In particular we show that it is possible to determine the transition between the two main welding modes: keyhole and conduction

    Frame-Based Beam-Summation Algorithms for Ultra Wideband Radiation from Extended Apertures

    No full text

    Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of Aluminium Alloys

    No full text
    The plasma plume induced during laser welding of metals is a mixture of metal vapour,coming from the vaporised weld pool surface and shielding gas. The influence of the shielding gas on the welded joints quality is not yet well understood and very few investigations, to the best of our knowledge, were addressed to study its role in case of welding of aluminium–magnesium alloys. In this paper we present a study of the dynamics of plasma plume produced in laser welding of 5xxx aluminium alloys by means of correlation spectroscopy. By our results we can correlate the influence of the welding speed, in case of ineffective gas shielding, to the loss of alloying elements. Finally, the results obtained are consistent with the EDX analysis performed in post-processing on the welded joints

    Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    No full text
    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows
    corecore