11 research outputs found

    Free-Space distribution of entanglement and single photons over 144 km

    Get PDF
    Quantum Entanglement is the essence of quantum physics and inspires fundamental questions about the principles of nature. Moreover it is also the basis for emerging technologies of quantum information processing such as quantum cryptography, quantum teleportation and quantum computation. Bell's discovery, that correlations measured on entangled quantum systems are at variance with a local realistic picture led to a flurry of experiments confirming the quantum predictions. However, it is still experimentally undecided whether quantum entanglement can survive global distances, as predicted by quantum theory. Here we report the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality measured by two observers separated by 144 km between the Canary Islands of La Palma and Tenerife via an optical free-space link using the Optical Ground Station (OGS) of the European Space Agency (ESA). Furthermore we used the entangled pairs to generate a quantum cryptographic key under experimental conditions and constraints characteristic for a Space-to-ground experiment. The distance in our experiment exceeds all previous free-space experiments by more than one order of magnitude and exploits the limit for ground-based free-space communication; significantly longer distances can only be reached using air- or space-based platforms. The range achieved thereby demonstrates the feasibility of quantum communication in space, involving satellites or the International Space Station (ISS).Comment: 10 pages including 2 figures and 1 table, Corrected typo

    Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states

    No full text
    We investigate limitations imposed by sequential attacks on the performance of differential-phase-shift quantum key distribution protocols that use pulsed coherent light. In particular, we analyze two sequential attacks based on unambiguous state discrimination and minimum error discrimination, respectively, of the signal states emitted by the source. Sequential attacks represent;I special type of intercept-resend attacks and, therefore, they provide ultimate upper bounds on the maximal distance achievable by quantum key distribution schemes

    Testing quantum devices: Practical entanglement verification in bipartite optical systems

    No full text
    We present a method to test quantum behavior of quantum information processing devices, such as quantum memories, teleportation devices, channels, and quantum key distribution protocols. The test of quantum behavior can be phrased as the verification of effective entanglement. Necessary separability criteria are formulated in terms of a matrix of expectation values in conjunction with the partial transposition map. Our method is designed to reduce the resources for entanglement verification. A particular protocol based on coherent states and homodyne detection is used to illustrate the method. A possible test for the quantum nature of memories using two nonorthogonal signal states arises naturally. Furthermore, closer inspection of the measurement process in terms of the Stokes operators reveals a security threat for quantum key distribution involving phase reference beams

    Value Added Consumer Packages

    No full text
    In this chapter we present a scheme for optimal Gaussian cloning of optical coherent states. Its optical realization is based entirely on simple linear optical elements and homodyne detection. This is in contrast to previous proposals where parametric processes were suggested to be used for optimal Gaussian cloning. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of up to 65%, which almost touches the optimal value of 2/3

    Witnessing effective entanglement over 2km of optical fiber

    No full text
    We present a continuous-variable QKD system using heterodyne detection. We experimentally determine channel characteristics and compare them to bounds of our entanglement criterion. For the first time, the local oscillator is considered in this verification. (C) 2010 Optical Society of Americ

    Feasibility of 300 km quantum key distribution with entangled states

    No full text
    A significant limitation of practical quantum key distribution (QKD) setups is currently their limited operational range. It has recently been emphasized (Ma et al 2007 Phys. Rev. A 76 012307) that entanglementbased QKD systems can tolerate higher channel losses than systems based on weak coherent laser pulses (WCP), in particular, when the source is located symmetrically between the two communicating parties, Alice and Bob. In the work presented here, we experimentally study this important advantage by implementing different entanglement-based QKD setups on a 144 km free-space link between the two Canary Islands of La Palma and Tenerife. We established three different configurations where the entangled photon source was placed at Alice's location, asymmetrically between Alice and Bob and symmetrically in the middle between Alice and Bob, respectively. The resulting quantum channel attenuations of 35, 58 and 71 dB, respectively, significantly exceed the limit for WCP systems (Ma et al 2007 Phys. Rev. A 76 012307). This confirms that QKD over distances of 300 km and even more is feasible with entangled state sources placed in the middle between Alice and Bob. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    Quantum technology: from research to application

    No full text
    The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research
    corecore