213 research outputs found
Measurement of the drift field in the ARGONTUBE LAr TPC with 266~nm pulsed laser beams
ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift
field generated in-situ by a Greinacher voltage multiplier circuit. We present
results on the measurement of the drift-field distribution inside ARGONTUBE
using straight ionization tracks generated by an intense UV laser beam. Our
analysis is based on a simplified model of the charging of a multi-stage
Greinacher circuit to describe the voltages on the field cage rings
A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters
We present a method to reach electric field intensity as high as 400 kV/cm in
liquid argon for cathode-ground distances of several millimeters. This can be
achieved by suppressing field emission from the cathode, overcoming limitations
that we reported earlier
On the Electric Breakdown in Liquid Argon at Centimeter Scale
We present a study on the dependence of electric breakdown discharge
properties on electrode geometry and the breakdown field in liquid argon near
its boiling point. The measurements were performed with a spherical cathode and
a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of
the time evolution of the breakdown volt-ampere characteristics was performed
for the first time. It revealed a slow streamer development phase in the
discharge. The results of a spectroscopic study of the visible light emission
of the breakdowns complement the measurements. The light emission from the
initial phase of the discharge is attributed to electro-luminescence of liquid
argon following a current of drifting electrons. These results contribute to
set benchmarks for breakdown-safe design of ionization detectors, such as
Liquid Argon Time Projection Chambers (LAr TPC).Comment: Minor revision according to editor report. 17 pages, 15 figures, 2
tables. Turboencabulato
Experimental study of electric breakdowns in liquid argon at centimeter scale
In this paper we present results on measurements of the dielectric strength
of liquid argon near its boiling point and cathode-anode distances in the range
of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such
distances the applied electric field at which breakdowns occur is as low as 40
kV/cm. Flash-overs across the ribbed dielectric of the high voltage
feed-through are observed for a length of 300 mm starting from a voltage of 55
kV. These results contribute to set reference for the breakdown-free design of
ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC)
ArCLight - a Compact Dielectric Large-Area Photon Detector
ArCLight is a novel device for detecting scintillation light over large areas
with Photon Detection Efficiency (PDE) of the order of a few percent. Its
robust technological design allows for efficient use in large-volume particle
detectors, such as Liquid Argon Time Projection Chambers (LArTPCs) or liquid
scintillator detectors. Due to its dielectric structure it can be placed inside
volumes with high electric field. It could potentially replace vacuum
PhotoMultiplier Tubes (PMTs) in applications where high PDE is not required.
The photon detection efficiency for a 10x10cm2 detector prototype was measured
to be in the range of 0.8% to 2.2% across the active area
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
Recommended from our members
The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector.
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies
- …