3 research outputs found

    Sour gas hydrothermal jarosite: ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift

    Get PDF
    As many as 29 mining districts along the Rio Grande Rift in southern New Mexico contain Rio Grande Rift-type (RGR) deposits consisting of fluorite–barite±sulfide–jarosite, and additional RGR deposits occur to the south in the Basin and Range province near Chihuahua, Mexico. Jarosite occurs in many of these deposits as a late-stage hydrothermal mineral coprecipitated with fluorite, or in veinlets that crosscut barite. In these deposits, many of which are limestone-hosted, jarosite is followed by natrojarosite and is nested within silicified or argillized wallrock and a sequence of fluorite–bariteFsulfide and late hematite– gypsum. These deposits range in age from ~10 to 0.4 Ma on the basis of 40Ar/39Ar dating of jarosite. There is a crude north– south distribution of ages, with older deposits concentrated toward the south. Recent deposits also occur in the south, but are confined to the central axis of the rift and are associated with modern geothermal systems. The duration of hydrothermal jarosite mineralization in one of the deposits was approximately 1.0 my. Most Δ18OSO4 –OH values indicate that jarosite precipitated between 80 and 240 °C, which is consistent with the range of filling temperatures of fluid inclusions in late fluorite throughout the rift, and in jarosite (180 °C) from Pen˜a Blanca, Chihuahua, Mexico. These temperatures, along with mineral occurrence, require that the jarosite have had a hydrothermal origin in a shallow steam-heated environment wherein the low pH necessary for the precipitation of jarosite was achieved by the oxidation of H2S derived from deeper hydrothermal fluids. The jarosite also has high trace-element contents (notably As and F), and the jarosite parental fluids have calculated isotopic signatures similar to those of modern geothermal waters along the southern rift; isotopic values range from those typical of meteoric water to those of deep brine that has been shown to form from the dissolution of Permian evaporite by deeply circulating meteoric water. Jarosite δ34S values range from ‒24%◦to 5%◦, overlapping the values for barite and gypsum at the high end of the range and for sulfides at the low end. Most δ34S values for barite are 10.6%◦ to 13.1%◦ , and many δ34S values for gypsum range from 13.1%◦ to 13.9%◦ indicating that a component of aqueous sulfate was derived from Permian evaporites (δ34S=12±2%◦). The requisite H2SO4 for jarosite formation was derived from oxidation of H2S which was likely largely sour gas derived from the thermochemical reduction of Permian sulfate. The low δ34S values for the precursor H2S probably resulted from exchange deeper in the basin with the more abundant Permian SO4 2‒ at ~150 to 200 °C. Jarosite formed at shallow levels after the pH buffering capacity of the host rock (typically limestone) was neutralized by precipitation of earlier minerals. Some limestone-hosted deposits contai

    New Mexico Geological Society Soil-geomorphic setting and change in prehistoric agricultural terraces in the Mimbres area, New Mexico Annual NMGS Fall Field Conference Guidebooks SOIL-GEOMORPHIC SETTING AND CHANGE IN PREHISTORIC AGRICULTURAL TERRACES

    No full text
    Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks
    corecore