19 research outputs found

    Crustal structure of the Peruvian continental margin from wide-angle seismic studies

    Get PDF
    Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure

    Ray84PC - Two-dimensional Raytracking and synthetic Seismogram Calculation on personal Computers

    No full text

    Origin of High Mountains in the Continents: The Southern Sierra Nevada

    No full text
    Active and passive seismic experiments show that the southern Sierra, despite standing 1.8 to 2.8 kilometers above its surroundings, is underlain by crust of similar seismic thickness, about 30 to 40 kilometers. Thermobarometry of xenolith suites and magnetotelluric profiles indicate that the upper mantle is eclogitic to depths of 60 kilometers beneath the western and central parts of the range, but little subcrustal lithosphere is present beneath the eastern High Sierra and adjacent Basin and Range. These and other data imply the crust of both the High Sierra and Basin and Range thinned by a factor of 2 since 20 million years ago, at odds with purported late Cenozoic regional uplift of some 2 kilometers

    Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling

    No full text
    Traveltime data from the 1993 Southern Sierra Nevada Continental Dynamics seismic refraction experiment reveal low crustal velocities in the southern Sierra Nevada and Basin and Range province of California (6.0 to 6.6 km/s), as well as low upper mantle velocities (7.6 to 7.8 km/s). The crust thickens from southeast to northwest along the axis of the Sierra Nevada from 27 km in the Mojave Desert to 43 km near Fresno, California. A crustal welt is present beneath the Sierra Nevada, but the deepest Moho is found under the western slopes, not beneath the highest topography. A density model directly derived from the crustal velocity model but with constant mantle density satisfies the pronounced negative Bouguer anomaly associated with the Sierra Nevada, but shows large discrepancies of >50 mgal in the Great Valley and in the Basin and Range province. Matching the observed gravity with anomalies in the crust alone is not possible with geologically reasonable densities; we require a contribution from the upper mantle, either by lateral density variations or by a thinning of the lithosphere under the Sierra Nevada and the Basin and Range province. Such a model is consistent with the interpretation that the uplift of the present Sierra Nevada is caused and dynamically supported by asthenospheric upwelling or lithospheric thinning under the Basin and Range province and eastern Sierra Nevada
    corecore