88 research outputs found

    Analysis of the rebalancing frequency in log-optimal portfolio selection

    Full text link
    In a dynamic investment situation, the right timing of portfolio revisions and adjustments is essential to sustain long-term growth. A high rebalancing frequency reduces the portfolio performance in the presence of transaction costs, whereas a low rebalancing frequency entails a static investment strategy that hardly reacts to changing market conditions. This article studies a family of portfolio problems in a Black-Scholes type economy which depend parametrically on the rebalancing frequency. As an objective criterion we use log-utility, which has strong theoretical appeal and represents a natural choice if the primary goal is long-term performance. We argue that continuous rebalancing only slightly outperforms discrete rebalancing if there are no transaction costs and if the rebalancing intervals are shorter than about one year. Our analysis also reveals that diversification has a dual effect on the mean and variance of the portfolio growth rate as well as on their sensitivities with respect to the rebalancing frequency

    Continuization of Timed Petri Nets: From Performance Evaluation to Observation and Control

    Full text link
    Abstract. State explosion is a fundamental problem in the analysis and synthesis of discrete event systems. Continuous Petri nets can be seen as a relaxation of discrete models allowing more efficient (in some cases polynomial time) analysis and synthesis algorithms. Nevertheless computational costs can be reduced at the expense of the analyzability of some properties. Even more, some net systems do not allow any kind of continuization. The present work first considers these aspects and some of the alternative formalisms usable for continuous relaxations of discrete systems. Particular emphasis is done later on the presentation of some results concerning performance evaluation, parametric design and marking (i.e., state) observation and control. Even if a significant amount of results are available today for continuous net systems, many essential issues are still not solved. A list of some of these are given in the introduction as an invitation to work on them.

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Microeconomic Theory

    No full text
    xviii.;ill.;486 hal.; 30 c

    Linear and Nonlinear Programming

    No full text
    New Yorkxiii, 546 p : Illus ; 24 cm
    • …
    corecore