6 research outputs found

    The Effect of Formulation, Process, and Method Variables on the Reconstitution Time in Dual Chamber Syringes

    No full text
    Reconstitution time of dried products is influenced by various factors including formulation, process, and reconstitution method itself. This manuscript describes factors affecting reconstitution in a dual chamber syringe using highly concentrated human monoclonal antibody and bovine serum albumin model formulations. Freezing and drying conditions had only minor impact on the reconstitution time, whereas the primary container and thus the geometry of the lyophilization cake played a major role. Prewarmed diluent and agitation decreased reconstitution time. For effective agitation, short displacements and high agitation frequencies were found to be desirable conditions to minimize reconstitution time for a given lyophilization cake while foam formation was minimized. The article also provides general strategies (e.g., reduction of lyophilized cake density, use of an optimized fill finish process, and suitable method parameters) to reduce reconstitution time, especially for drug product presented in a dual chamber syringe configuration. LAY ABSTRACT: Dried drug products need to be reconstituted to a liquid form before being applied parenteral. Reconstitution time is an important attribute and needs to be as fast as possible in order to serve patients' compliance. Reconstitution time is influenced by various factors including formulation, process, and the reconstitution method itself. The article provides general strategies (e.g., reduction of dried drug product cake density, use of an optimized fill finish process, and suitable method parameters) to reduce reconstitution time, especially for drug product presented in a dual chamber syringe. Fast reconstitution of lyophilisates in dual chamber syringe can be achieved by a combination of optimized manufacturing procedures and clear instructions for the end-user (e.g., roll syringe between palms to warm and agitate it to accelerate reconstitution)

    A Method to Determine the Kinetics of Sulute Mixing in Liquid/Liquid Formulation Dual-Chamber Syringes

    No full text
    Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products, which cannot be co-formulated due to technical or regulatory issues. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercial dual-chamber syringes (with a bypass designed as a longitudinal ridge) when the two liquids significantly differ in their physical properties (viscosity, density). However, an optimized dual-chamber syringe design with multiple bypass channels resulted in improved mixing of liquids. LAY ABSTRACT: Dual-chamber syringes were originally designed to separate a solid substance and its diluent. However, they can also be used to separate liquid formulations of two individual drug products. A liquid/liquid dual-chamber syringe can be designed to achieve homogenization and mixing of both solutions prior to administration, or it can be used to sequentially inject both solutions. While sequential injection can be easily achieved by a dual-chamber syringe with a bypass located at the needle end of the syringe barrel, mixing of the two fluids may provide more challenges. Within this study, the mixing behavior of surrogate solutions in different dual-chamber syringes is assessed. Furthermore, the influence of parameters such as injection angle, injection speed, agitation, and sample viscosity were studied. It was noted that mixing was poor for the commercially available dual-chamber syringes when the two liquids significantly differ in viscosity and density. However, an optimized dual-chamber syringe design resulted in improved mixing of liquids

    Assessment of Sensor Concepts for 100% In-Process Control of Low-Volume Aseptic Fill-Finish Processes

    No full text
    The pharmaceutical industry is currently being confronted with new and complex challenges regarding the aseptic filling of parenterals, especially monoclonal antibodies, particularly for fill volumes <200 µL, which have become increasingly important with the increasing and continued development of intravitreal drugs and highly concentrated formulations. Not only does low-volume filling pose challenges to aseptic manufacturing, but the development of suitable in-process control to ensure reliable and robust filling processes for low-volume conditions has also been difficult. In particular, fill volumes <200 µL exceed limits of accuracy and robustness for the well-established method of gravimetric fill-volume control. Therefore, the present study aimed to evaluate and test novel sensors, which may allow the accurate and precise 100% contact-free measurement of drug-product formulations, with respect to filling volumes. These sensors were designed to be less influenced by inevitable noise factors, such as unidirectional airflow and vibrations. We designed the study using five different sensor concepts, to screen and identify suitable alternatives to gravimetric fill-volume control. The examined sensor concepts were based on airflow, capacitive pressure, light obscuration. and capacitive measurements. Our results demonstrated that all of the tested sensor types worked in the desired low-volume range of 10-150 µL and showed remarkable results, in terms of accuracy and precision, when compared with a high-precision gravimetric balance. A sensor based on capacitance measurement was identified as the most promising candidate for future sensor implementation into an aseptic filling line. This sensor design proved to be superior in terms of both sensitivity and precision compared with the other tested sensors. We concluded that this technology may allow the pharmaceutical industry to overcome existing challenges with respect to the reliable measurement of aseptic fill volumes <200 µL. This technology has the potential to fundamentally change how the pharmaceutical industry verifies fill volumes by facilitating 100% in-process control, even at high machine speeds

    Controlling Ice Nucleation during Lyophilization: Process Optimization of Vacuum-Induced Surface Freezing

    No full text
    Biopharmaceuticals are often lyophilized to improve their storage stability. Controlling ice nucleation during the freezing step of the lyophilization process is desired to increase homogeneity of product properties across a drug product batch and shorten the primary drying time. The present communication summarizes the process optimization of the freezing process when using vacuum-induced surface freezing to control ice nucleation, in particular for amorphous samples. We characterized freeze-dried samples for solid state properties, and compared these to uncontrolled nucleated samples using bovine serum albumin (BSA) as a model protein. Freezing parameters were optimized to obtain complete nucleation, adequate cake resistance during the subsequent lyophilization cycle, and elegant cakes. We highlight the challenges associated with vacuum-induced surface freezing and propose optimized freezing parameters to control ice nucleation, enabling manufacturing of amorphous samples

    The pharmaceutical vial capping process; Container closure systems, capping equipment, regulatory framework, and seal quality tests

    No full text
    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process

    The Pharmaceutical Capping Process - Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force

    No full text
    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. LAY ABSTRACT: The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force to remove the flip-off button prior to usage is required to ensure product quality during storage and transportation until use. In addition, the complete crimp cap needs to be fixed in a tight position on the vial. In this study, we investigated the torque moment required to turn the crimp cap and the force required to remove the flip-off button of container closure system sealed with different capping equipment process parameters (having different residual seal force values)
    corecore