1,710 research outputs found

    Electrolytes at spherical dielectric interfaces

    Get PDF
    A variational theory is developed and applied to study the properties of dielectric spheres immersed in a symmetric electrolyte solution. In the limit that the radius of the sphere becomes much larger than the Debye screening length, the system reduces to that of a planar dielectric interface. For this case, the excess surface tension obtained by the variational theory reduces to the Onsager-Samaras [J. Chem. Phys. 2, 528 (1934)] limiting law at low electrolyte concentrations. As the radius of the dielectric sphere decreases, the excess surface tension also decreases. The implications of this work to protein-salt interactions and the salting out of proteins are discussed

    Structure and stability of helices in square-well homopolymers

    Full text link
    Recently, it has been demonstrated [Magee et al., Phys. Rev. Lett. 96, 207802 (2006)] that isolated, square-well homopolymers can spontaneously break chiral symmetry and freeze into helical structures at sufficiently low temperatures. This behavior is interesting because the square-well homopolymer is itself achiral. In this work, we use event-driven molecular dynamics, combined with an optimized parallel tempering scheme, to study this polymer model over a wide range of parameters. We examine the conditions where the helix structure is stable and determine how the interaction parameters of the polymer govern the details of the helix structure. The width of the square well (proportional to lambda) is found to control the radius of the helix, which decreases with increasing well width until the polymer forms a coiled sphere for sufficiently large wells. The helices are found to be stable for only a window of molecular weights. If the polymer is too short, the helix will not form. If the polymer is too long, the helix is no longer the minimum energy structure, and other folded structures will form. The size of this window is governed by the chain stiffness, which in this model is a function of the ratio of the monomer size to the bond length. Outside this window, the polymer still freezes into a locked structure at low temperature, however, unless the chain is sufficiently stiff, this structure will not be unique and is similar to a glassy state.Comment: Submitted to Physical Review

    How the orbital period of a test particle is modified by the Dvali-Gabadadze-Porrati gravity?

    Full text link
    In addition to the pericentre \omega, the mean anomaly M and, thus, the mean longitude \lambda, also the orbital period Pb and the mean motion nn of a test particle are modified by the Dvali-Gabadadze-Porrati gravity. While the correction to Pb depends on the mass of the central body and on the geometrical features of the orbital motion around it, the correction to nn is independent of them, up to terms of second order in the eccentricity ee. The latter one amounts to about 2\times 10^-3 arcseconds per century. The present-day accuracy in determining the mean motions of the inner planets of the Solar System from radar ranging and differential Very Long Baseline Interferometry is 10^-2-5\times 10^-3 arcseconds per century, but it should be improved in the near future when the data from the spacecraft to Mercury and Venus will be available.Comment: LaTex, 7 pages, 13 references, no tables, no figures. Section 2.3 added. To appear in JCA

    Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft.

    Get PDF
    ObjectivesTo evaluate ureteral replacement by a free homologous graft of acellular matrix in a rat model.MethodsIn 30 male Sprague-Dawley rats, a 0.3 to 0.8-cm midsegment of the left ureter was resected and replaced with an acellular matrix graft of equal length placed on a polyethylene stent. The animals were killed at varying intervals, and the grafted specimens were prepared for light and electron microscopy.ResultsIn all animals, the acellular matrix graft remained in its original position without evidence of incrustation or infection, and histologic examination showed complete epithelialization and progressive infiltration by vessels. At 10 weeks, smooth muscle fibers were observed; at 12 weeks, nerve fibers were first detected; at 4 months, smooth muscle cells had assumed regular configuration.ConclusionsThe ureteral acellular matrix graft appears to promote the regeneration of all ureteral wall components

    Tracking intracavernously injected adipose-derived stem cells to bone marrow.

    Get PDF
    The intracavernous (i.c.) injection of stem cells (SCs) has been shown to improve erectile function in various erectile dysfunction (ED) animal models. However, the tissue distribution of the injected cells remains unknown. In this study we tracked i.c.-injected adipose-derived stem cells (ADSCs) in various tissues. Rat paratesticular fat was processed for ADSC isolation and culture. The animals were then subject to cavernous nerve (CN) crush injury or sham operation, followed by i.c. injection of 1 million autologous or allogeneic ADSCs that were labeled with 5-ethynyl-2-deoxyuridine (EdU). Another group of rats received i.c. injection of EdU-labeled allogeneic penile smooth muscle cells (PSMCs). At 2 and 7 days post injection, penises and femoral bone marrow were processed for histological analyses. Whole femoral bone marrows were also analyzed for EdU-positive cells by flow cytometry. The results show that ADSCs exited the penis within days of i.c. injection and migrated preferentially to bone marrow. Allogenicity did not affect the bone marrow appearance of ADSCs at either 2 or 7 days, whereas CN injury reduced the number of ADSCs in bone marrow significantly at 7 but not 2 days. The significance of these results in relation to SC therapy for ED is discussed
    corecore