16,634 research outputs found
Recommended from our members
Enterprise application reuse: Semantic discovery of business grid services
Web services have emerged as a prominent paradigm for the development of distributed software systems as they provide the potential for software to be modularized in a way that functionality can be described, discovered and deployed in a platform independent manner over a network (e.g., intranets, extranets and the Internet). This paper examines an extension of this paradigm to encompass ‘Grid Services’, which enables software capabilities to be recast with an operational focus and support a heterogeneous mix of business software and data, termed a Business Grid - "the grid of semantic services". The current industrial representation of services is predominantly syntactic however, lacking the fundamental semantic underpinnings required to fulfill the goals of any semantically-oriented Grid. Consequently, the use of semantic technology in support of business software heterogeneity is investigated as a likely tool to support a diverse and distributed software inventory and user. Service discovery architecture is therefore developed that is (a) distributed in form, (2) supports distributed service knowledge and (3) automatically extends service knowledge (as greater descriptive precision is inferred from the operating application system). This discovery engine is used to execute several real-word scenarios in order to develop and test a framework for engineering such grid service knowledge. The examples presented comprise software components taken from a group of Investment Banking systems. Resulting from the research is a framework for engineering servic
Telegraph Noise in Coupled Quantum Dot Circuits Induced by a Quantum Point Contact
Charge detection utilizing a highly biased quantum point contact has become
the most effective probe for studying few electron quantum dot circuits.
Measurements on double and triple quantum dot circuits is performed to clarify
a back action role of charge sensing on the confined electrons. The quantum
point contact triggers inelastic transitions, which occur quite generally.
Under specific device and measurement conditions these transitions manifest
themselves as bounded regimes of telegraph noise within a stability diagram. A
nonequilibrium transition from artificial atomic to molecular behavior is
identified. Consequences for quantum information applications are discussed.Comment: 4 pages, 3 figures (as published
Conceptual design for measuring soil management sustainability
Soils are the nexus of food, energy and water which illustrates the need for a holistic approach in sustainable soil management. The search for relevant bioindicators of soil sustainability has led to a huge output of studies recently, but yet a proper parameter or a set of parameters has not been identified. Resilience is often promoted to be a boundary concept to integrate social and natural dimensions of sustainability. Therefore, resilience is a promising parameter when it comes to measuring sustainability of soil management practices, since it reflects both its highly interlinked ecological and management components. To include both of these two interlinked components, the whole concept of soil ecosystem functioning needs to be reconsidered. We will present a modified concept of soil functioning cycles within the three dimensions of potential, connectedness and resilience. Additionally, we present a first methodological approach of how to measure resilience by the maximum ecological performance (MEP), using the multi-omics approach. We will present resilience as a key element of an adaptive management scheme, to also meet the challenge of deriving information about the link between soil biodiversity and soil multifunctionality
Anomalous resistance overshoot in the integer quantum Hall effect
In this work we report experiments on defined by shallow etching narrow Hall
bars. The magneto-transport properties of intermediate mobility two-dimensional
electron systems are investigated and analyzed within the screening theory of
the integer quantized Hall effect. We observe a non-monotonic increase of Hall
resistance at the low magnetic field ends of the quantized plateaus, known as
the overshoot effect. Unexpectedly, for Hall bars that are defined by shallow
chemical etching the overshoot effect becomes more pronounced at elevated
temperatures. We observe the overshoot effect at odd and even integer plateaus,
which favor a spin independent explanation, in contrast to discussion in the
literature. In a second set of the experiments, we investigate the overshoot
effect in gate defined Hall bar and explicitly show that the amplitude of the
overshoot effect can be directly controlled by gate voltages. We offer a
comprehensive explanation based on scattering between evanescent incompressible
channels.Comment: 7 pages and 5 figure
Assessing digital preservation frameworks: the approach of the SHAMAN project
How can we deliver infrastructure capable of supporting the
preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of
user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a
holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres
- …