12,996 research outputs found

    Composite wall concept for high temperature turbine shrouds: Heat transfer analysis

    Get PDF
    A heat transfer analysis was made of a composite wall shroud consisting of a ceramic thermal barrier layer bonded to a porous metal layer which, in turn, is bonded to a metal base. The porous metal layer serves to mitigate the strain differences between the ceramic and the metal base. Various combinations of ceramic and porous metal layer thicknesses and of porous metal densities and thermal conductivities were investigated to determine the layer thicknesses required to maintain a limiting temperature in the porous metal layer. Analysis showed that the composite wall offered significant air cooling flow reductions compared to an all impingement air cooled, all metal shroud

    A double-dot quantum ratchet driven by an independently biased quantum point contact

    Full text link
    We study a double quantum dot (DQD) coupled to a strongly biased quantum point contact (QPC), each embedded in independent electric circuits. For weak interdot tunnelling we observe a finite current flowing through the unbiased Coulomb blockaded DQD in response to a strong bias on the QPC. The direction of the current through the DQD is determined by the relative detuning of the energy levels of the two quantum dots. The results are interpreted in terms of a quantum ratchet phenomenon in a DQD energized by a nearby QPC.Comment: revised versio

    Phonon-mediated vs. Coulombic Back-Action in Quantum Dot circuits

    Full text link
    Quantum point contacts (QPCs) are commonly employed to capacitively detect the charge state of coupled quantum dots (QD). An indirect back-action of a biased QPC onto a double QD laterally defined in a GaAs/AlGaAs heterostructure is observed. Energy is emitted by non-equilibrium charge carriers in the leads of the biased QPC. Part of this energy is absorbed by the double QD where it causes charge fluctuations that can be observed under certain conditions in its stability diagram. By investigating the spectrum of the absorbed energy, we identify both acoustic phonons and Coulomb interaction being involved in the back-action, depending on the geometry and coupling constants

    Spectroscopic and photometric studies of white dwarfs in the Hyades

    Full text link
    The Hyades cluster is known to harbour ten so-called classical white dwarf members. Numerous studies through the years have predicted that more than twice this amount of degenerate stars should be associated with the cluster. Using the PPMXL catalog of proper motions and positions, a recent study proposed 17 new white dwarf candidates. We review the membership of these candidates by using published spectroscopic and photometric observations, as well as by simulating the contamination from field white dwarfs. In addition to the ten classical Hyades white dwarfs, we find six white dwarfs that may be of Hyades origin and three more objects that have an uncertain membership status due to their unknown or imprecise atmospheric parameters. Among those, two to three are expected as field stars contamination. Accurate radial velocity measurements will confirm or reject the candidates. One consequence is that the longstanding problem that no white dwarf older than ~340 Myr appears to be associated with the cluster remains unsolved.Comment: 14 pages, 9 figures, accepted for publication in the Astronomy and Astrophysics journa

    Assessing digital preservation frameworks: the approach of the SHAMAN project

    Get PDF
    How can we deliver infrastructure capable of supporting the preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres
    • …
    corecore