9 research outputs found

    Theory of surface spectroscopy for noncentrosymmetric superconductors

    Get PDF
    We study noncentrosymmetric superconductors with the tetrahedral TdT_d, tetragonal C4vC_{4v}, and cubic point group OO. The order parameter is computed self-consistently in the bulk and near a surface for several different singlet to triplet order parameter ratios. It is shown that a second phase transition below TcT_c is possible for certain parameter values. In order to determine the surface orientation's effect on the order parameter suppression, the latter is calculated for a range of different surface orientations. For selected self-consistent order parameter profiles the surface density of states is calculated showing intricate structure of the Andreev bound states (ABS) as well as spin polarization. The topology's effect on the surface states and the tunnel conductance is thoroughly investigated, and a topological phase diagram is constructed for open and closed Fermi surfaces showing a sharp transition between the two for the cubic point group OO.Comment: 19 pages, 15 figures, accepted for publication in Phys. Rev.

    Response, relaxation and transport in unconventional superconductors

    Full text link
    We investigate the collision-limited electronic Raman response and the attenuation of ultrasound in spin-singlet d-wave superconductors at low temperatures. The dominating elastic collisions are treated within a t-matrix approximation, which combines the description of weak (Born) and strong (unitary) impurity scattering. In the long wavelength limit a two-fluid description of both response and transport emerges. Collisions are here seen to exclusively dominate the relaxational dynamics of the (Bogoliubov) quasiparticle system and the analysis allows for a clear connection of response and transport phenomena. When applied to quasi-2-d superconductors like the cuprates, it turns out that the transport parameter associated with the Raman scattering intensity for B1g and B2g photon polarization is closely related to the corresponding components of the shear viscosity tensor, which dominates the attenuation of ultrasound. At low temperatures we present analytic solutions of the transport equations, resulting in a non-power-law behavior of the transport parameters on temperature.Comment: 22 pages, 3 figure
    corecore