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We study noncentrosymmetric superconductors with the tetrahedral Td, tetragonal C4v, and cubic
point group O. The order parameter is computed self-consistently in the bulk and near a surface for
several different singlet to triplet order parameter ratios. It is shown that a second phase transition
below Tc is possible for certain parameter values. In order to determine the surface orientation’s
effect on the order parameter suppression, the latter is calculated for a range of different surface
orientations. For selected self-consistent order parameter profiles the surface density of states is
calculated showing intricate structure of the Andreev bound states (ABS) as well as spin polarization.
The topology’s effect on the surface states and the tunnel conductance is thoroughly investigated,
and a topological phase diagram is constructed for open and closed Fermi surfaces showing a sharp
transition between the two for the cubic point group O.

I. INTRODUCTION

Non-centrosymmetric materials lack a center of inver-
sion in their crystal lattice. They have attracted in-
creasing attention in recent years due to the fact that
spin-orbit interaction has a strong effect on their phys-
ical properties.1–7 In crystals with a center of inver-
sion the band-diagonal elements of the spin-orbit in-
teraction in a Bloch basis, Lnn(k), vanish by symme-
try. This is not the case for non-centrosymmetric ma-
terials, where these diagonal elements can be non-zero
and indeed large (30-300 meV).8 Anderson, in discussing
heavy fermion materials, used group classification to
study the possibilities for spin-triplet superconductivity
in spin-orbit coupled materials.9 Experimental signatures
of spin-triplet (as well as spin-singlet) pairing were found
in the non-centrosymmetric heavy-fermion superconduc-
tor CePt3Si, discovered in 2004.10 Since then many
more non-centrosymmetric superconductors (NCSs) have
been identified, including Y2C3,

11 Li2(Pd1−xPtx)3B,
12

CeIrSi3,
13 UIr,14, BiPd,15, and PbTaSe2,

16 amongst
others.17–24 These materials show signs of both spin-
singlet and spin-triplet supconductivity to a varying de-
gree. The system Li2(PdxPt1−x)3B has been studied in
more detail,25,26 indicating that the difference between
the two end compounds, x = 0 and x = 1, can at least in
part be explained by a dominating triplet component for
x = 0, i.e. Li2Pt3B, whereas Li2Pd3B seems to have
a dominating s-wave singlet component, indicated by
the rather low value of the upper critical magnetic field
extrapolated to zero temperature. Some systems, like
LaNiC2 and LaNiGa2, are candidates for a non-unitary
spin-triplet pairing state.27

Furthermore, it has been shown that, as spin-orbit in-
teraction is time-reversal invariant, these superconduc-
tors can be topologically non-trivial.2,4,28–35 The topol-
ogy and the singlet-triplet admixture are both a con-
sequence of the spin-orbit coupling (SOC) term in the
Hamiltonian of these materials, which is derived from
the non-relativistic limit of the Dirac equation and is pro-
portional to the gradient of the crystal lattice potential.

The lack of a center of inversion in the unit cell allows the
gradient of the potential to be large throughout the Bril-
louin zone (BZ), and thus the SOC cannot be neglected.
The above-mentioned property, that diagonal elements
of the SOC in a Bloch basis are in general non-vanishing
in non-centrosymmetric materials, allows to study the ef-
fects of the SOC in a minimal one-band model,8 which is
not possible in centrosymmetric materials.

In this paper we theoretically study NCSs with the em-
phasis on self-consistent superconducting order parame-
ters for various surface orientations, as well as for all the
topological phases of the crystal point groups Td, C4v,
and O with a closed Fermi surface. The SOC vector is
expanded in terms of harmonic functions, constrained by
the symmetries of the point group, to second order. The
relative weight of the first and second order terms is pa-
rameterized by g2. Second order terms are investigated
for the point groups C4v and O: one non-zero value of
g2 for C4v and three for O. Besides the gapped topolog-
ically trivial phases all point groups have one non-trivial
gapless phase, and O has, for a closed Fermi surface,
four non-trivial gapped phases, and we have chosen val-
ues of g2 to correspond to these phases. In the litera-
ture the point group C4v with g2 = 0 has been studied
extensively,36–40 as well as O with values of g2 equivalent
to our choice of g2 = 0.7.41–43 All results we present in
this paper are self-consistent, and for parameter combi-
nations not discussed so far in the literature. Non-self-
consistent results for surface spectra for various point
groups and surface orientations were obtained in Ref. 40,
and subsequently in Ref. 43. Topological aspects were in
the focus of attention in Ref. 44, whereas in Ref. 45 the
possibility of a surface instability was suggested.

II. THEORY

A. Normal state band dispersion

Within an effective one-band model, the SOC term in
the Hamiltonian is given by HSO

k
= αlk · σ, where α is
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the SOC strength, σ = (σ1, σ2, σ3) is a vector of spin
Pauli matrices, and lk is the SOC vector which is real,
invariant under crystal point group operations g,

lk ≡ l(k) = gl(g−1
k), (1)

and odd in k, l−k = −lk. We normalize the SOC vector
such that its maximum magnitude within the BZ is unity,
maxk∈BZ |lk| = 1.
The kinetic part of the normal-state Hamiltonian can

thus be written as

Ĥk =
∑

kαβ

c†
kα (ξkσ0 + αlk · σ)αβ ckβ (2)

with ξk = ǫk − µ, where ǫk is the band dispersion in
the absence of SOC (we will use for simplicity a nearest-
neighbor tight-binding dispersion), µ is the chemical po-

tential, and ckα (c†
kα) are fermion annihilation (creation)

operators for a quasiparticle with spin α ∈ {↑, ↓}. We
will study simple cubic (CUB) and body centered cu-
bic (BCC) lattices. The corresponding nearest-neighbor
tight binding dispersions are

ǫCUB
k

= t1 [cos (kx) + cos (ky) + cos (kz)] (3)

and

ǫBCC
k = 8t1 cos (kx/2) cos (ky/2) cos (kz/2) , (4)

where t1 is the hopping integral.
The point groups considered here are the cubic point

group O, relevant for e.g. Li2PdxPt3−x;
12,25,26,46,47 the

tetragonal point group C4v, relevant for e.g. CePt3Si;
10

and the tetrahedral point group Td, relevant for e.g.
Y2C3.

48 We use dispersion (3) for the cubic point group,
O, and for sake of simplicity also for the tetragonal point
group, C4v, whereas dispersion (4) will be used for the
tetrahedral point group Td. The SOC vectors are ob-
tained as lattice Fourier series, lk =

∑

n ln sin(k · Rn),
where Rn are Bravais lattice vectors, and where the in-
variance under point group operations, Eq. (1), leads to
restrictions on the ln.

8

The Hamiltonian, Eq. (2), is diagonalized and brought
to the so-called helicity basis by the canonical transfor-

mation Uk (lk · σ)U †
k
= |lk|σ3, where

Uk =

(

cos
(

θl
2

)

e−iφl sin
(

θl
2

)

−eiφl sin
(

θl
2

)

cos
(

θl
2

)

)

, (5)

with φl = tan−1(ly/lx) and θl = tan−1(
√

l2x + l2y/lz)

being the spherical angles of the SOC vector, lk =
(lx, ly, lz)

T , yielding

Ĥk =
∑

kλ

ξλ
k
b†
kλbkλ, bkλ =

∑

α

Ukλαckα (6)

where the helical index takes the values λ = {+,−},
and the helical band dispersion is given by ξ±

k
= ξk ±

α|lk|. Note that ξλ
k
= ξλ−k

even though the SOC vector
is antisymmetric. This is a consequence of Eq. (2) being
time-reversal invariant. Furthermore, the quasiparticle
spin is fixed with respect to its momentum on each band,
being parallel (λ = +) or antiparallel (λ = −) to lk.

B. Superconducting state

Superconductivity is modeled within the Nambu-
Gor’kov formalism. Under the canonical transfor-
mation defined above the Nambu spinor Ĉk =

(ck↑, ck↓, c
†
−k↑, c

†
−k↓)

T transforms into its helical equiv-

alent B̂k = (bk+, bk−, b
†
−k+, b

†
−k−)

T ≡ ÛkĈk with Ûk ≡
diag(Uk, U

∗
−k

), and the ”hat” denotes Nambu structure.
It is straightforward to construct 4 × 4 helical Green
functions, e.g. the retarded ĜR

k1k2
(t1, t2) = −iΘ(t1 −

t2)〈{B̂k1
(t1), B̂

†
k2
(t2)}〉H, where Θ is the Heaviside step

function, 〈•〉H denotes a grand canonical average, {•, •}
is an anticommutator, and B̂k(t) a Heisenberg operator.
The quasiclassical propagator is obtained by integrating
out fast oscillations from the full Green functions. In the
case when the magnitude of the SOC is much smaller
than the Fermi energy, α ≪ EF , it suffices to integrate
over ξk and treat the SOC term perturbatively. For
this case, in Wigner coordinates the quasiclassical prop-
agator is given by ǧ(kF ,R, ǫ, t) =

∫

dξkτ̂3Ǧ(k,R, ǫ, t),
with k parameterized by (ξk,kF ), ξk = vF · (k − kF ),
τ̂ = (τ̂1, τ̂2, τ̂3) are Pauli matrices in particle-hole space,
and the ”check” denotes Keldysh matrix structure.
The SOC term enters the transport equations as a

source term. Within this approximation the Eilenberger
equation49 for the quasiclassical Green function takes the
following form in the helicity basis

ivF · ∇Rĝ
R,A,M + [zτ̂3 − ∆̂− v̂SO, ĝ]R,A,M = 0̂ (7)

with z = iǫn = iπT (2n + 1) for Matsubara, and z =
ǫ ± i0+ for retarded (advanced), quantities. [•, •] is a
commutator, the SOC term is v̂SO = α|lkF

|σ3τ̂0, and the
gap has the form

∆̂ =

(

0 ∆

∆̃ 0

)

(8)

where the ”tilde operation” is defined as the particle-
hole conjugate, Q̃(kF ,R, z, t) ≡ Q∗(−kF ,R,−z∗, t).
Eq. (7) is supplemented by the normalization condition

(ĝR,A,M)2 = −π21̂. In order to simplify notation, we will
henceforth drop the subscript F at the Fermi momen-
tum; all momenta in the quasiclassical theory are Fermi
momenta. The subscript will be written out only when
it is necessary to avoid confusion. We consider time-
independent situations, such that the time variable t will
be dropped from here on.
The lack of a center of inversion allows for an admix-

ture of spin-singlet and spin-triplet pairing.37 The spin-
triplet vector is set to be parallel to the SOC vector in
order to maximize Tc.

38 In spin basis the order parameter
is written

∆(k) = Yk(∆s +∆tlk · σ)iσ2, (9)

where Yk is a crystal basis function corresponding to ir-
reducible representation of the dominant pairing chan-
nel, and ∆s and ∆t are referred to as the singlet and
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triplet component, respectively. In the helicity ba-
sis the order parameter takes the form ∆(k) = Yk ·
diag(∆+(k)t+(k),∆−(k)t−(k)), where

∆±(k) = ∆s ±∆t|lk|, (10)

and the phase factors are given by

t±(k) = −e∓iφl(k), φl(k) = tan−1(ly/lx). (11)

Note that t±(−k) = −t±(k).
Eq. (7) can be parameterized in terms of coherence

functions, γ(k,R, z) and γ̃(k,R, z),50 in such a way as
to automatically fulfill the normalization condition,

ĝR,A,M ≡
(

g f

f̃ g̃

)R,A,M

= ∓iπ
[

N−1G
]R,A,M

N =

(

(σ0 − γγ̃) 0
0 (σ0 − γ̃γ)

)

G =

(

(σ0 + γγ̃) 2γ
−2γ̃ −(σ0 + γ̃γ)

)

(12)

where the top (bottom) sign corresponds to ĝR (ĝA), and
in the case of ĝM, to positive (negative) Matsubara fre-
quencies. With this, Eq. (7) transforms into two decou-
pled Riccati differential equations,

(ivF · ∇R + 2z)γ = γ∆̃γ + [α|lk|σ3, γ]−∆ , (13)

(ivF · ∇R − 2z)γ̃ = γ̃∆γ̃ + [α|lk|σ3, γ̃]− ∆̃ . (14)

In the homogeneous case, i.e. in the bulk, the solution
is γh = Yk · diag(γ+(k)t+(k), γ−(k)t−(k)) with the ab-

breviations γ± = −∆±/(z + i
√

|Yk∆±|2 − z2). For this
case the SOC term drops out.
The surface problem is treated by solving Eqs. (13)-

(14) along classical trajectories parallel to vF , using the
homogeneous solutions as initial conditions at a sufficient
distance from the surface. This is done by discretizing
the path and treating the order parameter as a series
of step functions in the middle between the desired grid
points. Each step is solved analytically.51 Parameteriz-
ing the path as R = R0 + ρvF and writing the order
parameter ∆(ρ) = ∆0 + Θ(ρ)(∆1 −∆0) at one of these
steps, γ(ρ) with ρ > 0 is given by

γ(ρ) = γh + eiΩ1ρδ0
(

eiΩ2ρ + C(ρ)δ0
)−1

(15)

with δ0 = [γ0 − γh], where γ0 ≡ γ(0) is the initial value
and γh is the homogeneous solution for ρ > 0, Ω1 =

z−γh∆̃ and Ω2 = −z+∆̃γh, and C(ρ) = C0e
iΩ1−eiΩ2C0,

where C0 is the solution to C0Ω1 − Ω2C0 = ∆̃. The
solution for γ̃(ρ) is completely analogous.
The reflection at the surface is in leading approxima-

tion (as α≪ EF ) considered to be specular in spin space,
with the momentum component parallel to the surface,
k‖, conserved. Writing the momentum for incoming tra-
jectories k = (k⊥,k‖) this gives the momentum for out-
going trajectories as k = (−k⊥,k‖). Following Ref. 50,
incoming (outgoing) quantities are written with lower-
case (uppercase) symbols and the surface boundary con-
ditions become

U †
k
Γ(k, ε)U∗

−k = Γs(k, ε) = γs(k, ε) = U †
k
γ(k, ε)U∗

−k

(16)

and

UT
−k

Γ̃(k, ε)Uk = Γ̃s(k, ε) = γ̃s(k, ε) = UT
−k
γ̃(k, ε)Uk,

(17)

where the s superscript indicates that the coherence func-
tions are expressed in the spin basis.

C. Gap equation

The pairing potential in spin space can be written as
a sum of singlet, triplet, and a mixture term37

Vs1s2s3s4(k,k
′) =

V

2
YkY∗

k′

{

vs(iσ2)s1s2(iσ2)
†
s3s4

+

vt(lk · σiσ2)s1s2(lk′ · σiσ2)†s3s4 +
vm

[

(lk · σiσ2)s1s2(iσ)†s3s4 + (iσ)s1s2(lk′ · σiσ2)†s3s4
]}

(18)

where vs, vt, and vm are free parameters that describe
the relative coupling strength of each term, respectively,
V is the overall pairing potential strength, and Yk is the
basis function of the irreducible representation with the
highest Tc. To avoid ambiguity, we normalize the relative
pairing strengths according to

v2s + v2t + v2m = 1 (19)

and for later reference introduce spherical coordinates

(vs, vt, vm) = (cos(φv) sin(θv), sin(φv) sin(θv), cos(θv)) .

(20)

In helicity space the pairing potential takes the form

V (k,k′) =
V

2
YkY∗

k′

(

vs + vt|lk||lk′ | − vml+ vs − vt|lk||lk′ | − vml−
vs − vt|lk||lk′ |+ vml− vs + vt|lk||lk′ |+ vml+

)

(21)

with l± = |lk| ± |lk′ |. The self-consistency equation in the Matsubara formalism is expressed in terms of Fermi
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surface averages 〈•〉, defined as

〈•〉 = 1

NF

∫

d2kF

(2π)3|vF |
(•) , NF =

∫

d2kF

(2π)3|vF |
.(22)

With this, the self-consistency equation takes the form

(

∆+(k)
∆−(k)

)

= TNF

|ǫn|<ǫc
∑

ǫn

〈

V (k,k′)

(

f+(k
′, ǫn)

f−(k
′, ǫn)

)〉

k′

(23)

where f± are defined by

f(k, ǫn) =

(

f+(k, ǫn)t+(k) 0
0 f−(k, ǫn)t−(k)

)

, (24)

the phase factors are defined in Eq. (11), and ǫc is the
BCS technical cutoff. Using the relations ∆s = 1

2 (∆+ +

∆−) and ∆t|lk| = 1
2 (∆+ − ∆−), the implicit form of

the self-consistency equation for the singlet and triplet
components of the order parameter reads

(

∆s

∆t

)

= T

|ǫn|<ǫc
∑

ǫn

NFV

〈

Ak

(

f+
f−

)〉

, (25)

where

Ak =
1

2
Y∗
k

(

vs − vm|lk| vs + vm|lk|
vt|lk| − vm −vt|lk| − vm

)

. (26)

After elimination of the cutoff and the pairing strength V
in favor of the superconducting transition temperature,
one obtains

(

∆s

∆t

)

=

[

ln

(

T 〈Lk〉

T λmax

c

)]−1

T
∑

ǫn

〈

Ak

(

f+
f−

)

− π

|ǫn|
Lk

(

∆s

∆t

)〉

, (27)

where the matrix exponent in the logarithm, T 〈Lk〉, is
taken element-wise, i.e.

[

T 〈Lk〉
]

ij
≡ T 〈[Lk]ij〉 , (28)

and with

Lk =

(

vs|Yk|2 −vm|Yklk|2
−vm|Yk|2 vt|Yklk|2

)

. (29)

Furthermore, λmax ≡ max{λ1, λ2}, and λ1,2 are the
eigenvalues of the matrix 〈Lk〉. We follow Ref. 52 in
eliminating the cut-off dependence in close vicinity to the
surface as well. For details on the numerical procedure
to achieve self-consistency see appendix A.

D. Bulk superconducting phase

At T = Tc the self-consistency equation reduces to

ln

(

2eγǫc
πTc

)

〈Lk〉
(

∆s

∆t

)

=
1

NFV

(

∆s

∆t

)

(30)

where γ = 0.5772... is the Euler-Mascheroni constant.
The number of positive eigenvalues of 〈Lk〉 determines
the number of nucleation channels, with Tc determined
by the largest eigenvalue λmax. Using Eq. (20), the eigen-
values can be mapped onto the unit sphere. How the
number of nucleation channels depends on the spherical

angles φv = tan−1(vt/vs) and θv = tan−1(
√

v2s + v2t /vm)
can be seen in Fig. 1. When both eigenvalues are posi-
tive there are two possible nucleation channels, the dom-

inant and the subdominant one. The dominant chan-

nel is responsible for the transition to superconductiv-
ity due to its larger critical temperature. The domi-
nant channel also determines the singlet to triplet or-
der parameter ratio, ∆s/∆t, and their relative sign. The
subdominant channel nucleates at a lower temperature
T sub.
c ≤ Tc. With a finite mixing, vm 6= 0, an admix-

ture of singlet and triplet components is obtained. For
certain choices of the parameters (vs, vt, vm) it is possi-
ble to achieve a cross-over from dominating singlet com-
ponent at T = Tc to a dominating triplet component
at T = 0. An example in the single-channel region is
(vs, vt, vm) = (1, 0, a/(〈|lk|2〉 − a2)) (ignoring normaliza-
tion) with the parameter a being slightly larger than the
maximum value of the SOC vector on the Fermi surface,

θv/π

φ
v
/
π

# Nucleation Channels

2

1

0

0 0.5 1
0

0.5

1

1.5

2

FIG. 1. Dependence of the number of nucleation channels,
i.e. positive eigenvalues to the matrix defined in Eq. (29), on

the angles φv = tan−1(vt/vs) and θv = tan−1(
√

v2s + v2t /vm).
The ovals are given by 2 cot(θv) ≤ sin(2φv). The number of
channels is independent of the SOC as long as it is finite.
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g2 rbulk∆

O 0.0 0 0.26 0.38 0.50 0.62 0.74 0.86 0.98 1.1
O 0.7 0 0.20 0.33 0.46 0.59 0.72 0.84 0.97 1.1
O 1.03 0 0.09 0.23 0.38 0.52 0.67 0.81 0.96 1.1
O 2.5 0 0.17 0.30 0.44 0.57 0.70 0.83 0.97 1.1
C4v 0.0 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1
C4v 4.0 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1
Td N/A 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1

TABLE I. The scaled bulk singlet to triplet ratios, rbulk∆ ≡
∆s/(∆t max |l(kF )|), chosen for the different point groups,
O, C4v , and Td, and their respective g2 values used in this
work.

e.g. a = 1.01max |lk|. This means that the topology of
the system can be sensitive to its sub-critical tempera-
ture.
In certain parameter ranges for (vs, vt, vm) it is possi-

ble to construct a configuration with two active channels
in which the subdominant channel has a lower free energy
at T = 0, thus inducing a second phase transition below
Tc. The simplest way to get a second phase transition
is to choose (vs, vt, vm) in such a way as to get a domi-
nant channel with a large triplet component, as well as a
rather large subdominant critical temperature. A exam-
ple for such a choice is (vs, vt, vm) = (0.999〈|lk|2〉, 1, 0)
(ignoring normalization) giving a dominant pure triplet
channel, and a subdominant pure singlet channel. The
subdominant critical temperature is T sub.

c = 0.996Tc for
the point groups and SOC vectors in table I (assuming
Yk = 1). The condensation energy at zero temperature,
assuming the same density of states on both Fermi sur-
face sheets (which is the approximation employed here as
the splitting is small), is given by

δΩ = −NF

2

(

|∆s|2 + 2|∆s∆t|〈|lkF
|〉+ |∆t|2〈|lkF

|2〉
)

,

(31)
and yields a lower value for the subdominant channel, for
all three point groups and SOC vectors considered in this
work, with this choice of (vs, vt, vm).

E. Angle-resolved density of states

The angle-resolved surface density of states (DOS) is
given by N(k, ǫ) = −(2π)−1NF ImTrλ[g

R(k, ǫ)], or ex-
plicitly in terms of coherence functions

N(k, ǫ)

NF

= ReTrλ

{

[σ0 − γ(k, ǫ)Γ̃(k, ǫ)]−1 − 1

2
σ0

}

.

(32)

The spin-resolved DOS along the quantization axis j ∈
{x, y, z} is given by N

(j)
± (k, ǫ) = N(k, ǫ) ± N (j)(k, ǫ),

where

N (j)(k, ǫ)

NF

= ReTrs

{

σj [σ0 − γs(k, ǫ)Γ̃s(k, ǫ)]−1 − 1

2
σj

}

.

(33)

Note that all quantities in Eq. (33) are expressed in the
spin basis. Using a non-self-consistent order parameter,
with the bulk solution all the way to the surface, it is
straightforward to show there are two classes of trajec-
tories giving rise to Andreev bound states (ABS) at zero
energy (see appendix B for details). Introducing the no-
tation Υk ≡ sign[Yk∆−(k)] the first class of trajectories
is simply given by Υk = −Υk 6= 0. With the spheri-
cal angles (φl, θl) and (φl, θl) corresponding to lk and lk

respectively, the second class is given by solutions to

F (φl, θl, φl, θl) = −1 , (34)

with the definition F (φl, θl, φl, θl) = cos(θl) cos(θl) +
cos(φl − φl) sin(θl) sin(θl), provided that (Υk,Υk) =
(0,−1), (Υk,Υk) = (−1, 0), or (Υk,Υk) = (−1,−1).
This second class of bound states arises due to the phase
factors t±(k) defined in Eq. (11), which can yield an ex-
tra phase shift of π. These results remain true for self-
consistent order parameters as long as the gap does not
completely close some distance from the surface.

F. Point contact spectra

The point contact conductance between a normal
metal and an NCS are computed using the following as-
sumptions: the size of the point contact is much smaller
than the coherence length but much larger than the Fermi
wavelength, the Fermi surfaces on both sides of the inter-
face are considered to be equal, and the proximity effect
is ignored. The normal metal having index 1, and the
NCS index 2, the scattering matrix of the interface in
the spin/helicity basis is given by

S =

(

S11 S12

S21 S22

)

=

(

rσ0 tU †
k

t∗U−k −rUkU
†
k

)

(35)

with the transmission amplitude

t(αk) =
t0 cos(αk)

√

1− t20 sin2(αk)
(36)

where t0 is the tunneling parameter and αk is the angle
between the surface normal and the Fermi velocity of the
outgoing trajectories in the normal metal. The reflection
amplitude is given by r =

√
1− t2. The zero-temperature

tunnel conductance is given by40

G(eV ) =
〈

n · vF1

[

||B(ǫ)||2 − ||S12A2(ǫ)||2
]〉

out

+

〈

n · vF1

∣

∣

∣

∣

∣

∣B(−ǫ)γ2(−ǫ)S̃21

∣

∣

∣

∣

∣

∣

2
〉

out

(37)

where the expression is evaluated at ǫ = eV , vF1
is the

Fermi velocity in the normal metal, 〈•〉out indicates that
the average is only for outgoing trajectories in the normal
metal, B(ǫ) = S12 (σ0 +A2(ǫ)S22),

A2(ǫ) =
(

σ0 − γ2(ǫ)S̃22γ̃2(ǫ)S22

)−1

γ2(ǫ)S̃22γ̃2(ǫ) (38)
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and || • ||2 ≡ 1
2Tr

[

(•)(•)†
]

. The normal state conduc-
tance, GN , is simply obtained by setting the coherence
functions to zero.

G. Topology

We characterize the topology of a system by computing
three topological invariants. The starting point is the
Bogolioubov-de Gennes (BdG) Hamiltonian

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(39)

obeying time-reversal symmetry, T , particle-hole sym-
metry, C , as well as the combined ’chiral’ symmetry
S = iT C. The BdG Hamiltonian is thus of the sym-
metry class DIII.53 It anticommutes with S and in the
basis where S is block diagonal H becomes block off-
diagonal, H̄ = V HV †. The flat-band block off-diagonal
Hamiltonian Q(k) is constructed by projecting all bands
above (below) the gap to +1 (−1)

Q(k) =

(

0 q(k)
q†(k) 0

)

(40)

where q(k) is a 2 × 2 matrix in the one-band model (we
set for simplicity Yk = 1)

q(k) =
1

2
[A|lk|λ1 +Bkλ2]σ0 +

1

2
[A|lk|λ2 +Bkλ1]

lk

|lk|
· σ (41)

with A = α+ i∆t, Bk = ξk + i∆s, λ1 = λ−1
+ −λ−1

− , λ2 =

λ−1
+ + λ−1

− , where λ± = |A|lk| ±Bk|. Note that Q(k),
and thus q(k), is ill-defined for nodal order parameters.
Fully gapped systems are classified by calculating the

3D winding number which is defined as

ν =

∫

BZ

d3k

24π2
εabcTr

[

(q−1∂aq)(q
−1∂bq)(q

−1∂cq)
]

(42)

where Einstein summation is implied, εabc is the Levi-
Civita pseudo-tensor, a, b, c ∈ {kx, ky, kz}, and the inte-
gral is over the entire first BZ. From the definition of q it
is clear that ν is only well-defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e. ∆−(k

−
F ) 6= 0. There are two ways this can be true; ei-

ther sign[∆−(k
−
F )] = +1 ∀k−

F =⇒ ∆s/∆t > max |l(k−
F )|,

or sign[∆−(k
−
F )] = −1 ∀k−

F =⇒ ∆s/∆t < min |l(k−
F )|.

We calculate ν numerically using the procedure in ap-
pendix C.
Nodal systems are classified by calculating the 1D

winding number which is defined as

NL =

∮

L

dl

2πi
Tr

[

q−1∇lq
]

(43)

where l parameterizes the loop L in the BZ, and ∇l is the
directional gradient along this loop. The loop L cannot
pass through nodes of the order parameter, but is other
than that arbitrary. The 1D Hamiltonian for this loop
is in general not time-reversal invariant and is thus of
symmetry class AIII.53 In order to characterize a nodal
phase the loop needs to be constructed in such a way as
to always encircle a line node of ∆−(k

−
F ) for any Fermi

surface geometry.
With increasing singlet to triplet ratio the first nodes

appear at the points where ∆s/∆t = min |l(k−
F )|. In-

creasing ∆s/∆t further the nodal rings continue to be
positioned around these points until they connect with
one another. At this stage the nodal rings become posi-
tioned around the points where they eventually disappear
∆s/∆t = max |l(k−

F )|. Thus a general loop should pass
through the points where the nodal rings appear and dis-
appear. This is accomplished by the loop

L : Γ→ min |l(k−
F )| → ∂BZ→ max |l(k−

F )| → Γ (44)

where ∂BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.
In order to study the topology’s effect on the sur-

face states the 1D winding number is also computed for
straight noncontractible loops, i.e. loops traversing one
or several of the three circles making up the BZ torus
T

3 = S1×S1×S1, that are perpendicular to the surface.
Writing the momentum k = (k‖, k⊥) and the surface nor-
mal n = (l,m, n) the 1D winding number is written

N(lmn)(k‖) =

∫

dk⊥
2πi

Tr
[

q−1∇⊥q
]

. (45)

Restricting ourselves to time-reversal invariant non-
contractible loops another topological invariant can be
defined. Namely the Z2 invariant

W(lmn)(K‖) =
∏

K

Pf[iσ2q
T (K)]

√

det[iσ2qT (K)]
(46)

where K are time-reversal invariant momenta on the
loop, and Pf[•] denotes the Pfaffian of an antisymmet-
ric matrix •. The 1D Hamiltonian for this loop is of the
symmetry class DIII.53

The singlet (triplet) component is said to be domi-
nant if the inequality ∆s/∆t > max |l(k−

F )| is true (false).
With a dominant singlet component the material is fully
gapped. Increasing ∆s and/or decreasing ∆t the mate-
rial becomes nodal and eventually fully gapped again if
min |l(k−

F )| > 0. As is shown below the dominance of
either component is temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier
transforming the BdG Hamiltonian in the relative mo-
mentum coordinate k⊥ in the direction of the surface
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normal n,

H(k‖, k⊥,R)→ H(k‖, ρ,R). (47)

The helical dispersion, ξλ
k
, contains for the tight-binding

approximation we use trigonometric functions whose
Fourier transform give rise to a series of delta functions

H(k‖, ρ,R) =
∑

j

Hj(k‖,R+
1

2
ρn) δ(j − ρ/ρ0) (48)

where H−j(k‖,R− 1
2ρn) = H†

j (k‖,R+ 1
2ρn), j is a layer

index, and ρ0 is the length one needs to move along the
direction of the surface normal in order to return to a
translation-equivalent point in the lattice unit cell. The
sum has a finite number of terms, i.e. there exist a num-
ber jc such that Hj = 0 : |j| > jc. The terms Hj with
j 6= 0 can be interpreted in terms of hopping across the
layers. Discretizing the center-of-mass coordinate R in
steps of ρ0, the Schrödinger equation for L layers can be
written

j(l)
∑

j=−j(l)

Hj

(

k‖,nρ0(l +
1

2
j)

)

ψj(k‖) = El(k‖)ψl(k‖),

(49)

where l = 0, 1, . . . , L−1 and j(l) = min{jc, l} which takes
care of the boundary conditions, i.e. no hopping across
the boundary. Eq. (48) can be written more compactly as
a matrix equation Heff(k‖)ψ(k‖) = E(k‖)ψ(k‖), and the
band structure is given by the eigenvalues of Heff, Non-
trivial topology gives rise to zero-energy ABS. We are
therefore mainly interested in the band structure close
to zero energy. This allows us to avoid diagonalizing
Heff, and instead only compute the smallest magnitude
eigenvalues using the Lanczos method. Note that the
order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassi-
cal calculations is considered to be much smaller than the
Fermi energy, α≪ EF . In this case the Fermi surface is
only weakly split. Ignoring this splitting, and the Fermi
velocity renormalisation, the quasiparticles with opposite
helicity are assigned to a single, common Fermi surface,
and move coherently along classical trajectories. In addi-
tion, for the quasiclassical part of the numerical calcula-
tions, the Fermi surface is approximated to be spherical,
with |kF | being equal to the average of the Fermi sur-
face defined by ξ (kF ) = 0 with (t1, µ) = (−40α,−50α).
Here, t1 determines the bandwidth, which must be large
compared to the Fermi-surface splitting in order for the
approximation of equal Fermi surfaces for both helicities
to be valid, and µ < 0 must smaller than t1 − α in order
for the Fermi surface to be closed. The chosen values are
consistent with the approximation of an approximately

spherical Fermi surface. The SOC term enters the trans-
port equations as a source term. In the following, we
restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation
A1, i.e. Yk = 1.

A. The Cubic Point Group O

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the cubic
point group O, takes the form

lk =





sin(kx) [1− g2 (cos(ky) + cos(kz))]
sin(ky) [1− g2 (cos(kz) + cos(kx))]
sin(kz) [1− g2 (cos(kx) + cos(ky))]



 (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions.
Its magnitude and direction is illustrated in Fig. 2.

An important property of the SOC vector correspond-
ing to the cubic point group is its lack of line nodes in
the BZ, it only vanishes at specific points. With g2 = 0
these points are simply Γ, X, M, and R [for the nota-
tion see Fig. 3(a)]. A finite value of g2 brings about two
more points. With g2 > 0 they are positioned somewhere
on the paths Γ → R, and Γ → M, and with g2 < 0 on
Γ → R, and X → R, in Fig. 3 (a). The exact positions,
k
∗, of these points depend on the value of g2, and are

−1 0 1

−1

−0.5

0

0.5

1

k1/|kF |

k
2
/
|k

F
|

(a) O, g2 = 1.03

0.05

0.1

0.15

0.2

0.25

FIG. 2. The magnitude (color) and direction (arrows) of the
SOC vector corresponding to the point group O defined in
Eqs. (50), with the g2 = 1.03. The SOC is shown upon
the spherical Fermi surface defined by the average Fermi mo-
mentum given by ξ(kF ) = 0, where ξ is the correspond-
ing tight-binding dispersion in the absence of SOC with
(t1, µ) = (−40α,−50α). The Fermi surface is seen from the
k = (1, 1, 1) direction.
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FIG. 3. (a) The high symmetry points and axes in the BZ for a simple cubic crystal. (b) The minima of the SOC vector on the
negative helical Fermi surface, with t1 = −40α. Note the transition between a closed and open Fermi surface at µ = t1. The
topological phase diagram for an open and closed FS is shown in (c) and (d) respectively. White areas indicate a gapped phase
with trivial topology, (NL, ν) = (0, 0); grey a nodal phase with NL = 1 with a loop defined by Eq. (44); colored areas gapped
non-trivial phases with ν taking the values (black, red, cyan) = (+10,−2,+2) in (c), and (green, blue, yellow, magenta) =
(+1,−5,+7,−1) in (d).

given by

Γ→ R : k∗ = cos−1

(

1

2g2

)

(1, 1, 1)T , (51)

Γ→M : k∗ = cos−1

(

1

g2
− 1

)

(1, 1, 0)T , (52)

X → R : k∗ = (b, π, b)T , b = cos−1

(

1

g2
+ 1

)

. (53)

The lack of line nodes means that it is easy to construct
a Fermi surface for which the minimum value of the SOC
on the negative helical FS, min |l(k−

F )|, is not zero. The

dependence of min |l(k−
F )| on the chemical potential and

the SOC parameter g2 is shown in Fig. 3 (b). The SOC
minimum is zero along certain lines in this parameter
space. The line at µ = t1 marks the transition between
open and closed FS, i.e. the FS is tangent to the X-point
in the BZ. These lines in Fig. 3 (b) also mark the bound-
aries of fully gapped regions with different values of the
3D winding number ν. This is demonstrated in figs. 3 (c)
and (d) in which the topological phase diagram is shown
for an open, µ = −20α, and closed, µ = −50α, Fermi
surface respectively. White indicates that the system is
fully gapped and topologically trivial, ν = 0, whereas the
colored regions (excluding grey) indicate that the system
is fully gapped and topologically non-trivial, ν 6= 0. Grey
indicates a topologically non-trivial nodal phase, NL = 1,
with loops defined by Eq. (44).

The self-consistent order parameter is calculated for
four different values of g2, namely g2 ∈ {0, 0.7, 1.03, 2.5},
one for each distinct gapped topologically non-trivial
phase with a closed Fermi surface, i.e. the colored re-
gions in Fig. 3 (d). This is done for nine values of the
scaled bulk singlet to triplet ratio, rbulk∆ ∈ [0, 1.1], with
one active channel. These values are shown in table I.

In order to investigate how the order parameter sup-
pression depends on the surface orientation the order
parameter is computed for a range of different sur-
face normals, tracing out the path n = (1, 0, 0) →
(1, 1, 0) → (1, 1, 1) → (0, 1, 2) → (1, 0, 0). As a measure
of the suppression the ratio rbulk∆ /rsurf.∆ , where rsurf.∆ ≡
∆surf.

s /(∆surf.
t max |lkF

|) is the scaled surface singlet to
triplet ratio, is plotted in Fig. 4 (a) - (d). The sup-
pression is seen to be the largest for the surface normal
n = (1, 1, 1)

Along the same path of surface orientations the zero-
bias conductance, computed with Eq. (37), is plotted in
Fig. 4 (e) - (h). For singlet to triplet ratios in the inter-
val min |lkF

| < ∆s/∆t < max |lkF
| very large zero-bias

conductance is seen for all surface orientations except the
two high symmetry axes, n = (1, 0, 0) and n = (1, 1, 0).
This is due to there being no trajectories for which ∆−

changes sign upon reflection for these surface orienta-
tions. For all other surface orientations this is not the
case, including the high symmetry axis n = (1, 1, 1).
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FIG. 4. Plots (a) - (d) show the quantity rsurf.∆ /rbulk∆ = [∆s/∆t]
surf. · [∆t/∆s]

bulk as a measure of the order parameter surface
suppression. This is done for a range of different surface normals along the path n = (1, 0, 0) → (1, 1, 0) → (1, 1, 1) → (0, 1, 2) →

(1, 0, 0). In plots (e) - (h) the zero-bias conductance, computed with t0 = 10−
1

2 , is shown for the same surface normals. The
numbers in the legend hold for all plots and correspond to the columns in table I showing the scaled singlet to triplet ratios.

Note that all lines for which ∆s/∆t < min |lkF
| are

degenerate, and the zero-bias conductance is zero for
∆s/∆t > max |lkF

|. Furthermore, the surface suppres-
sion due to self-consistency does not affect the zero-bias
conductance. This reflects the fact that the gap does not
go to zero at some distance inwards from the surface for
the obtained gap profiles.

The Andreev bound states (ABS) of NCSs have intri-
cate structures and are spin polarized.36 This is a con-
sequence of the SOC being antisymmetric, lk = −l−k.
States corresponding to different Andreev bound state
branches have opposite spin polarization, and this spin
polarization changes sign for reversed trajectories. As a
result, the Andreev states carry spin current along the
interface.36 The existence of a surface spin current is a
direct consequence of the spin-orbit coupling in the sys-
tem.

As an example, the momentum angle-resolved and
spin-resolved local density of states, N (z)(φ, ǫ), computed
with Eq. (33), is plotted in Fig. 5(a) for momenta in the
xy-plane (parameterized by the azimuthal angle φ, the
polar angle is θ = π/2), at the surface with surface nor-
mal n = (1, 0, 0), for g2 = 1.03 and a self-consistent pure
triplet order parameter. An energy broadening ǫ→ ǫ+iδ
with δ = 10−2 was used, and the self-consistent order
parameter was computed at T = 0.2Tc. Red (blue) indi-
cate relative polarization for spin up (down) quasiparti-
cles. The spin polarization axis is along the z-axis and
N (x) = N (y) = 0. This is true for all values of g2 with a
pure triplet order parameter. However, the ABS struc-
ture is very different for the four g2 values. Furthermore
the spin polarization axis is found to be dependent on the
singlet to triplet ratio, in addition to surface orientation.

The momentum-resolved zero-energy ABS for n =
(1, 1, 1) are shown in Fig. 5 (b), computed with the bulk

value of the order parameter all the way to the surface,
assuming rbulk∆ = 0.67. The tunneling parameter was set

to t0 = 10−
1

2 (or t20 = 0.1, making sure to be in the
tunneling regime), and the broadening of the energies,
ǫ← ǫ + iδ, with δ = 10−3. The disk is the projection of
the spherical Fermi surface onto the slab surface. Black
indicates that there are no ABS for those momenta, green
indicates ABS for which (Υk,Υk) = (+1,−1), and yellow
(Υk,Υk) = (−1,+1). For this choice of surface orienta-
tion and singlet to triplet ratio these two types of trajec-
tories are the only ones yielding ABS. This is not the case
for lower singlet to triplet ratios, other g2 values, and/or
other surface orientations. Then there can exist solutions
to Eq. (34). Indeed, for ∆s/∆t < min |lkF

| they are the
only solutions yielding ABS. For ∆s/∆t > max |lkF

| no
zero-energy ABS are seen.

Point contact conductance spectra for g2 = 1.03,
t0 = 10−

1

2 and n = (1, 1, 1) are shown in Fig. 5 (c).
A small energy broadening ǫ → ǫ + iδ with δ = 10−2

was used for the plot, except close to zero energy, where
δ = 10−5 was used (and 2.5 times as many momen-
tum directions in the momentum average) in order to
show the sharp zero-bias conductance peak. The trans-
mission parameter is set to t0 = 10−

1

2 . Furthermore,
max(∆) ≡ ∆bulk

s + ∆bulk
t max(|lkF

|), and the plots are
shifted 0.2 upwards from each other for the sake of vis-
ibility. The order parameters used are computed self-
consistently at T = 0.2Tc, and with only one active chan-
nel. The point contact conductance spectra differ widely
between surface orientations and the values of g2, in ad-
dition to the less pronounced difference between singlet
to triplet ratios. The most striking difference is the ap-
pearance of zero-bias conductance peaks (ZBCPs) which
are present for all singlet to triplet ratios in the inter-
val min |lkF

| < ∆s/∆t < max |lkF
| provided there are
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FIG. 5. All plots are for the cubic point group O with g2 = 1.03. (a) N (z)(k, ǫ), defined in Eq. (33), which is a measure
of the spin polarization along the z-axis. It is shown for a self-consistent pure triplet order parameter and for momentum
directions in the xy plane (i.e. θ = π/2), at the surface with the surface normal n = (1, 0, 0). (b) Momentum-resolved ABS
at zero energy computed assuming a constant order parameter with rbulk∆ = 0.67. The disk is the projection of the Fermi
surface onto the slab surface with n = (1, 1, 1). Green regions corresponds to ABS for which (Υk,Υk) = (+1,−1), and yellow
regions to (Υk,Υk) = (−1,+1). Momenta of trajectories not yielding ABS are colored black. (c) Point contact conductance

spectra along n = (1, 1, 1) for self-consistent order parameters (the numbers refer to columns for rbulk∆ in table I), and with

t0 = 10−
1

2 . (d) The topological invariant N(111), with rbulk∆ = 0.67, where light green/blue corresponds to N(111) = ±1, and

white to trivial topology. (e) The surface band structure with k
‖
1 = 0, and rbulk∆ = 0.67. (f) The lowest positive eigenvalues of

Heff for self-consistent order parameter with rbulk∆ = 0.67. Black regions correspond to zero energy. Dashed circles in (d) and
(f) show for comparison the projection of the spherical Fermi surface used in the quasiclassical calculations.

trajectories with sign[∆−(k)] = −sign[∆−(k)].

In Fig. 5 (d) the topological invariants N(111) and

W(111) are plotted for rbulk∆ = 0.67. However,W(111) = 1,
i.e. trivial, for this choice of parameters, and trivial
topology is colored white. Light green/blue corresponds
to N(111) = ±1. The dashed circle indicates the projec-
tion of the spherical Fermi surface used in the quasiclas-
sical calculations, i.e. Fig. 5 (a) - (c). Even though the
Fermi surface is not spherical, it is clear that the zero-
energy ABS are directly related to the topology. As is
shown for the tetragonal point group C4v below, the ABS
given by solutions to Eq. (34), for the relevant values of
(Υk,Υk), is directly related to the Z2 invariant being
non-trivial (i.e. W(111) = −1).
Zero-energy states are present in the band structure

whenever the aforementioned topological invariants have
non-trivial values. In Fig. 5 (e) the surface band struc-

ture is shown for rbulk∆ = 0.67 along the k
‖
2-axis with

k
‖
1 = 0, and L = 1.3 · 104 layers. N(111) 6= 0 gives rise

to singly degenerate zero-energy flat bands, one on each
surface, with the corresponding wavefunctions decaying

exponentially into the bulk. The surface momenta of the
zero-energy flat bands are given by N(111)(k‖) 6= 0, which
can be seen in Fig. 5 (f) where the lowest positive eigen-
value of Heff [see Eq. (49)] is plotted for self-consistent
order parameter. Note that the zero-energy flat-bands
are given by the projection of non-trivial values of the
1D winding number.

B. The Tetragonal Point Group C4v

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the tetrago-
nal point group C4v takes the form

lk =





sin(ky)
− sin(kx)

g2 sin(kx) sin(ky) sin(kz) [cos(ky)− cos(kx)]





(54)
where g2 determines the relative weight between first and
second order contributions, just like for the cubic point
group O. Its magnitude and direction on the Fermi sur-
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FIG. 6. The SOC vector, defined by Eq. (54), with g2 = 0.
See the caption of Fig. 2.

face is illustrated in Fig. 6.

But unlike O, this point group has line nodes of the
SOC in the BZ. For all values of g2 the SOC is identically
zero along the three paths parallel to the z-axis, Γ→ Z,
X→ R, and M→ A in Fig. 7 (a). Given the simple cu-
bic first order tight-binding dispersion, for the range of
µ we study the line node Γ→ Z intersects all closed, and
the line node X → R intersects all open Fermi surfaces.
Thus min |l(k−

F )| = 0 for both cases. The transition be-
tween the two is therefore seamless, and there are no
fully gapped phases with sign[∆−(k

−
F )] = −1. The only

two distinct phases is a topologically trivial, ν = 0, and
a nodal non-trivial phase, NL = 1, shown in white and
grey respectively in Fig. 7 for a closed Fermi surface,
µ = −50α.
Despite there only being a single topologically non-

trivial phase the order parameter is calculated self-
consistently for the two values g2 ∈ {0, 4} in order to
study the effect of second order contributions to the SOC
vector. This is done for nine values of the scaled bulk sin-
glet to triplet ratio, rbulk∆ ∈ [0, 1.1], with one active chan-
nel. The exact values are shown in table I. The order
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FIG. 7. (a) High symmetry points and axes in the BZ of a
tetragonal crystal. (b) Topological phase diagram for a closed
Fermi surface with µ = −50α and t1 = −40α. White areas:
gapped phase with trivial topology, (NL, ν) = (0, 0); grey:
nodal phase with NL = 1 [loop defined by Eq. (44)].
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FIG. 8. Plots (a) - (b) show the quantity rsurf.∆ /rbulk∆ =

[∆s/∆t]
surf. · [∆t/∆s]

bulk as a measure of the order param-
eter surface suppression. This is done for a range of different
surface normals along the path n = (1, 0, 0) → (1, 1, 0) →
(1, 1, 1) → (0, 1, 2) → (1, 0, 0). In plots (c) - (d) the zero-

bias conductance, computed with t0 = 10−
1

2 , is shown for the
same surface normals. The numbers in the legend holds for
all plots and correspond to the columns in table I showing the
scaled singlet to triplet ratios.

parameter is calculated with the same surface normals as
for the cubic point group. How the order parameter sup-
pression depends on the surface orientation can be seen in
Fig. 8 (a) - (b). Here the greatest suppression is not for
the surface normal n = (1, 1, 1), but rather n = (1, 1, 0),
and n = (0, 1, 2) show very little suppression.

The zero-bias conductances for the two g2 values, are
very dissimilar for surface normals in the xy-plane. With
g2 = 0, Fig. 8 (c), rather large conductances are seen
for 0.69 ≤ rbulk∆ ≤ 0.96 in between the high symmetry
axes n = (1, 0, 0) and n = (1, 1, 0), with the largest for
rbulk∆ = 0.83 and n ≈ (1, 0.44, 0). The lines correspond-
ing to 0 < rbulk∆ ≤ 0.55 are (almost) degenerate due to all
of them having smaller singlet to triplet ratios than the
rather small difference between the maximum and mini-
mum value of the SOC in the xy-plane of the Fermi sur-
face. Only a few trajectories around the poles contribute
to the ZBCPs. There are no ZBCPs for n = (1, 1, 0)
but rather a large dome-like feature which is interest-
ingly higher than the peaks for the (almost) degenerate
lines. With g2 = 4, Fig. 8 (d), the lines corresponding to
0.69 ≤ rbulk∆ ≤ 0.96 show a dip for n ≈ (1, 0.4, 0) due to
the higher order contributions in the SOC changing the
shape of the nodal rings, causing their projection onto
the surface to largely overlap for these singlet to triplet
ratios.

The ABS are heavily affected by self-consistency and
are, just like for O, spin polarized. In Fig. 9 (a)
the quantity N (z)(k), Eq. (33), is plotted in the xy-
plane for a pure triplet order parameter and n =
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FIG. 9. All plots are for the tetragonal point group C4v with g2 = 0. See the caption of Fig. 5, here rbulk∆ = 0.69 in (b) and
(d) - (f). The magenta line in (b) denotes an ABS for which Υk = Υk = −1. Red in (d) indicates W(111) = −1.

(1, 0, 0). The largest effect of self-consistency is seen for
glancing trajectories and energies between approximately
|ǫ|/max(∆) ∈ [0.5, 1]. The ABS in this range are not
present in the non-self-consistent case. For a pure triplet
order parameter N (x) = N (y) = 0.

The momentum-resolved zero-energy ABS, for g2 = 0,
rbulk∆ = 0.69 and n = (1, 1, 1), is shown in Fig. 9 (b).
Here, not only the trajectories for which Υk = −Υk 6=
0, colored green and yellow, give rise to ABS, but also
trajectories for which Υk = Υk = −1 and Eq. (34)
holds, colored magenta. This magenta line is there due
to the SOC vanishing along the high symmetry axis Γ→
Z, see Fig. 7 (a), combined with the SOC vector being
perpendicular to this axis. This line is present for g2 = 4
as well, but only for 0 ≤ rbulk∆ < 0.69, whereas it is
present for 0 ≤ rbulk∆ < 0.96 with g2 = 0, amongst the
ratios investigated.

In the tunnel conductance spectra, plotted for n =
(1, 1, 1) and t0 = 10−

1

2 in Fig. 9 (c), ZBCPs are seen
for all scaled singlet to triplet ratios in the interval
rbulk∆ ∈ (0, 1), due to min |l(k)| = 0. Unlike the ZBCPs in
the tunnel conductance spectra for O with g2 = 1.03, Fig.
5 (c), which emanate from valleys around ǫ = 0, most of
the ZBCPs here emanate from a large dome. The domes
are a consequence of the magenta colored ABS together
with the ’flatness’ of the coherence functions in the de-
nominator of the expression for the tunnel conductance
when varying the momentum, such that trajectories with
momenta in close vicinity to the ABS condition give rise
to a large number of states that contribute considerably

to the tunnel conductance. With increasing rbulk∆ these
states decrease in number. For rbulk∆ > 0.83 they have
completely disappeared and thus the dome is gone and
the ZBCP emanates from a valley.
The topological invariants N(111) and W(111) are plot-

ted in Fig. 9 (d). Light blue/green corresponds to
N(111) = ±1 and white to trivial values of both invari-
ants. The dashed circle is the projection of the spheri-
cal Fermi surface used in the quasiclassical calculations.
The red line is given by W(111) = −1. Thus states corre-
sponding to solutions of Eq. (34) are directly related to
the Z2 invariant being non-trivial, and are topologically
protected as well.
In Fig. 9 (e) the band structure is shown for g2 = 0

and rbulk∆ = 0.69 along the k
‖
2-axis with k

‖
1 = 0, and

L = 1.3 · 104 layers. Note that the states corresponding
to W(111) = −1 are doubly degenerate on each surface.
Just like for O the zero-energy bands are given by the
projection of the non-trivial values of the topological in-
variants, which can be seen in Fig. 9 (f).

C. The Tetrahedral Point Group Td

To next-nearest neighbors in the sum over Bravais lat-
tice sites8 the SOC vector corresponding to the tetrahe-
dral point group Td takes the form

lk =





sin(kx) [cos(kz)− cos(ky)]
sin(ky) [cos(kx)− cos(kz)]
sin(kz) [cos(ky)− cos(kx)]



 (55)
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FIG. 10. The SOC vector, defined by Eq. (55). See the
caption of Fig. 2.

with no free parameter g2 in contrast with O and C4v. It
is illustrated in Fig. 10. This SOC exhibits line nodes in
the BZ along the paths Γ → P → H→ Γ and P → N in
Fig. 11 (a). Just like for C4v the line nodes intersect the
negative helical Fermi surface for all values of µ, i.e. all
Fermi surface geometries, given a BCC first order tight-
binding dispersion. Thus min |l(k−

F )| = 0 and there are

no gapped phases with sign[∆−(k
−
F )] = −1, which can

be seen in the topological phase diagram in Fig. 11 (b).
Just like for C4v there are only two distinct topological
phases; one gapped trivial, (NL, ν) = (0, 0), and a nodal
non-trivial, NL = 1, phase.
Due to there being no free parameter to vary the self-

consistent order parameter is only calculated with this
single SOC vector for this point group. This is done
for nine values of the scaled bulk singlet to triplet ratio,
rbulk∆ ∈ [0, 1.1], with one active channel. The exact values
are shown in table I. The suppression of these order
parameters is shown in Fig. 12 (a) for the same range
of surface normals as for the previous examined point
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FIG. 11. (a) The high symmetry points and axes in the BZ of
a tetrahedral crystal. (b) The topological phase diagram for
different values of the chemical potential. The Fermi surface
is open (closed) for sign[µ] = ∓1. White areas indicate a
gapped phase with trivial topology, (NL, ν) = (0, 0); grey a
nodal phase with NL = 1 [loop defined by Eq. (44)].
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FIG. 12. (a) The quantity rsurf.∆ /rbulk∆ = [∆s/∆t]
surf. ·

[∆t/∆s]
bulk as a measure of the order parameter surface sup-

pression. (b) The zero-bias conductance for the same surface
normals as in (a). The numbers in the legend holds for both
plots and correspond to the columns in table I showing the
scaled singlet to triplet ratios.

groups. Here the largest suppression is for n = (1, 1, 0)
and n = (0, 1, 2) and barely any suppression at all for
n = (1, 1, 1).

In Fig. 12 (b) the zero-bias conductance for these order
parameters and surface normals are shown. Unsurpris-
ingly the ZBC is very small for the high-symmetry axes
n = (1, 0, 0) and n = (1, 1, 0), it is quite large, but still
a local minima, for the high-symmetry axis n = (1, 1, 1),
and larger still in between these surface normals.

The ABS are spin polarized for this point group as well.
In Fig. 13 (a) the quantity N (z)(k), Eq. (33), is plotted
for a pure triplet order parameter and n = (1, 0, 0). For a
pure triplet N (x) = N (y) = 0. Self-consistency does not
drastically alter the ABS for this surface normal due to
the states being predominantly located at small energies
for glancing trajectories.

The momentum-resolved zero-energy ABS for rbulk∆ =
0.69 are shown in Fig. 13 (b). The states in middle are
from the non-overlapping parts of the projection of the
nodal rings around the Γ → P high symmetry axis, and
the ones around the edges of the disk from the projection
of the nodal rings around Γ→ H and Γ→ N.

Just like for the other point groups ZBCPs are seen
in the tunnel conductance spectra, with t0 = 10−

1

2 , for
n = (1, 1, 1) and singlet to triplet ratios in the interval
min |lkF

| < ∆s/∆t < max |lkF
|, i.e. 0 < rbulk∆ < 1,

see Fig. 13 (c). ABS given by Eq. (34) only appear
for 0 ≤ rbulk∆ ≤ 0.28, and then not for k‖ = 0 which
is the most important momentum when calculating the
tunnel conductance54. Hence the ZBCPs emanating from
valleys in the spectra.

The non-trivial values of the topological invariant
N(111) (W(111) being trivial for this singlet to triplet ratio)
is shown in Fig. 13 (d). The dashed circle is projection
of the spherical Fermi surface used in the quasiclassical
calculations. Compared to the other point groups con-
sidered the spherical Fermi surface approximation does
not work as well due to the actual Fermi surface bulging
out in the k = (1, 1, 1) direction. Furthermore, the BZ is
not cubic and thus the line integral defining N(lmn) po-
tentially goes through Fermi surfaces from adjacent BZs,
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FIG. 13. All plots are for the tetrahedral point group Td. See the caption of Fig. 5, here rbulk∆ = 0.69 in (b) and (d) - (f).

which is precisely what happens for this surface normal.
The slightly complicated structure near the circle thus
stems from the partial overlap of the nodal rings of the
adjacent Fermi surface combined with N(lmn) being ad-
ditive.
Zero-energy flat bands are seen in the band structure

for this point group and surface normal as well, shown

for rbulk∆ = 0.69 along the k
‖
2-axis, with k

‖
1 = 0 and L =

1.3 · 104 layers, in Fig. 13 (e).
As seen in the plot of the lowest positive band, Fig. 13

(f), the zero-energy states around the origin are some-
what patchy at this resolution, hence the slight gap at

k
‖
2 ≈ ±0.28|kF | in Fig. 13 (e). Furthermore, there is a

small gap at k
‖
2 ≈ ±0.8|kF | in Fig. 13 (e), but this is not

an artifact of the lower resolution of the band structure
compared to the topological invariant plot, Fig. 13 (d),
as there is a small region separating N(111) = ±1 at these
momenta.

IV. CONCLUSIONS

We have theoretically studied noncentrosymmetric su-
perconductors self-consistently for the point groups O,
C4v, and Td, with a closed Fermi surface. Four values
of g2, parameterizing the relative weight of first and sec-
ond contributions in the spin-orbit coupling (SOC), given
by the Bravais lattice sum up to next-nearest neighbors,
were chosen for O in order to investigate all its gapped
topological phases for a closed Fermi surface. The point
groups C4v and Td were shown to have no gapped topo-

logical phases, yet two values of g2 were chosen for C4v

in order to study the effect of second order contributions
in the SOC vector. For Td no higher order terms in the
SOC were seen up next-nearest neighbors.

The reason for the existence of gapped topological
phases for O was shown to be due to the fact that the
SOC only vanishes in the Brillouin zone at high sym-
metry points, whereas the SOC vanishes at certain high
symmetry axes for C4v and Td. It was shown for O that
the topology changes at the Lifshitz transition, i.e. at
the transition point between an open and closed Fermi
surface. This does not happen for C4v and Td and the
Lifshitz transition is topologically seamless.

In the bulk it was shown that there are two distinct
mixed states; with one or two nucleation channels. In
both cases it was demonstrated that there is a possibil-
ity of a cross-over from dominating singlet to dominating
triplet, or vice versa, with decreased temperature. De-
pending on the material this could be important if exper-
iments are done at different temperatures. With two nu-
cleation channels there is a possibility of a second phase
transition at the subdominant critical temperature and
it was shown by explicit construction that the subdom-
inant channel for certain parameter values indeed has
lower free energy. If this can be extended to more com-
plicated Fermi surface geometries and parameter values
remains to be seen.

The order parameter suppression’s dependence on sur-
face orientation and singlet to triplet order parameter
ration was studied for a range of different surface nor-
mals. The suppression was seen to be highly dependent
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on surface orientation.
The Andreev bound states (ABS) are found to be spin

polarized with different polarization axes for different sin-
glet to triplet ratios. The order parameter suppression
affects the ABS heavily for glancing trajectories and sub-
gap energies close to the gap, and less for smaller ener-
gies. Zero-energy states are not affected by the calculated
suppression. Thus the zero-bias conductance peaks are
present in the non-self-consistent tunnel conductance as
well.
We showed that the zero-energy surface states are

topological in nature. Thus it is clear that the calculated
suppression should not affect the zero-energy states due
to the gap not vanishing at any distance from the surface.
If this can happen for other parameters and/or surface
orientations is an open question.
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Appendix A: Temperature Dependence of the Gap

The self-consistency equation for the order parameter
Eq. (27), can be written symbolically in the form of a
fixed point equation

∆ = F(∆) (A1)

where ∆ = (∆s,∆t)
T , and the function F(∆) is simply

a short-hand notation for the right hand side of Eq. (27).
Any ∆ that obeys eq. (A1) is called a fixed point. Then
a iteration scheme is employed to find a convergence to
a fixed point. This yields a series of points ∆1, ∆2, . . .,
which hopefully converges to a solution. The procedure
is said to have converged when the difference between
iterations is sufficiently small

|∆n+1 −∆n|
|∆n|

< c (A2)

where the number c is the convergence criterion. In the
bulk the fixed points can be obtained by computing F(∆)
for a vast number of points.
We illustrate the method for the case of two attrac-

tive channels. Because the number of possible indepen-
dent attractive fixed points is equal to the number of

positive eigenvalues to the matrix L, one has for val-
ues of (vs, vt, vm) in the yellow oval in Fig. 1 two nu-
cleation channels. However, the subdominant channel
does in general not nucleate at Tc, but at a lower tem-
perature, T sub.

c < Tc. Thus, if one follows the proce-
dure in the previous paragraph for the initial guesses ∆0

one will not see the possible transition to the subdom-
inant channel. What is needed in this case is to cal-
culate the order parameter with increasing temperature
instead of decreasing. By computing a few iterations,
n ∼ 20, at a sufficiently low temperature, say T = 0.1Tc
(which must be smaller than T sub.

c obviously), for a num-
ber of random initial guesses, an attractive fixed point
corresponding to the subdominant channel is obtained,
and is denoted ∆

sub.. For the lowest temperature the
initial guess will thus be ∆

sub., and subsequent guesses
∆0(T + δT ) = ∆n(T ). By calculating the order parame-
ter this way, it will converge to the subdominant channel
value until T ≤ T sub.

c . At T = T sub.
c the order parameter

transitions to the dominant channel value due to it be-
ing the only attractive fixed point at these temperatures,
unless the subdominant channel value at T = T sub.

c is
zero, ∆n(T

sub.
c ) = 0, in which case it will stay zero. In

this manner, the subdominant critical temperatures are
obtained.

A choice of parameter values yielding an admixture of
singlet and triplet with an attractive subdominant chan-
nel is e.g. (vs, vt, vm) = (1, 1/〈|lk|2〉,−0.1) (ignoring nor-
malization). In Fig. 14 examples for the fixed point it-
eration are shown for the point group O (the plots look
qualitatively similar for all other point groups). The grey
blobs correspond to the function f(∆) = |∆ − F(∆)|.
Darker indicates smaller values of f(∆), and pure black
indicates the existence of a fixed point. The colored cir-
cles connected by lines show the convergence of 25 ran-
dom initial guesses, ∆0, progressing a number of itera-
tion steps. The colors of the circles indicate the iteration
number n. Starting with dark blue for n = 0, transi-
tioning through cyan, green, yellow, and ending with red

FIG. 14. Two examples for convergence diagrams for a
mixed order parameter with two active channels (dominant
and subdominant), for point group O with g2 = 0, and
(vs, vt, vm) = (〈|lk|

2〉, 1,−0.1〈|lk|
2〉) (ignoring normalization).

See text for explanation.
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for n = nmax. Any fixed point ∆nmax
converges to is an

attractive fixed point, however there are repulsive fixed
points present in the subdominant channel. Concentrat-
ing on the subdominant channel, Fig. 14, one notices in
addition to the attractive fixed points also two repulsive
fixed points. From numerical investigations this seems
to be a general feature, and the fixed points roughly fall
on a parallelogram with the attractive fixed points at the
vertices.

A criterion if a second phase transition exists can be
obtained from the condensation energy, Eq. (31). Thus
there is a second phase transition if it holds that

[

|∆s|2 + 2|∆s∆t|〈|lk|〉+ |∆t|2〈|lk|2〉
]sub.

>
[

|∆s|2 + 2|∆s∆t|〈|lk|〉+ |∆t|2〈|lk|2〉
]dom.

.(A3)

at zero temperature. For certain parameters this is in-
deed the case. In general, how small T sub.

c can be with-
out losing the second phase transition depends on the
point group. The key to get a second phase transition
is to choose (vs, vt, vm) in such a way as to get a domi-
nant channel with a large triplet component, as well as a
rather large subdominant critical temperature.

Appendix B: Zero-bias Andreev bound states

In the bulk, for zero energy and for real order param-
eter, the coherence functions take a particularly simple
form,

γ (k) = i

(

sgn [∆+ (k)] t+ (k) 0
0 sgn [∆− (k)] t− (k)

)

,(B1)

γ̃ (k) = −i
(

sgn [∆+ (k)] t∗+ (−k) 0
0 sgn [∆− (k)] t∗− (−k)

)

.

(B2)

The values for the parameters (vs, vt, vm) were chosen to
yield positive singlet and triplet components, and we can
therefore simplify the expressions further to

γ (k) = i

(

t+ (k) 0
0 Υkt− (k)

)

, (B3)

γ̃ (k) = −i
(

t∗+ (−k) 0
0 Υkt

∗
− (−k)

)

, (B4)

where Υk ≡ sgn [∆s/∆t − |lk|]. We are interested in
zero-bias states protected by topology, for which it suf-
fices to discuss the non-self-consistent order parameter,
i.e. bulk values all the way to the surface. Because Υk

and Υk can take three values each there are 32 = 9 dif-
ferent cases to consider. They are listed below together

with the equations for surface ABS, using the (real) re-
flection amplitude 0 ≤ r ≤ 1. The solutions separate
naturally into three groups. The first group

Υk = 1 ,Υk = 1 : r2 + 1 = 0 (B5)

Υk = 1 ,Υk = 0 : r2 + 1 = 0 (B6)

Υk = 0 ,Υk = 1 : r2 + 1 = 0 (B7)
has no solutions. Therefore, there can be no ZBCPs for
rbulk∆ > max |lkF

|, because Υk = +1 ∀k. The second
group,

Υk = 1 ,Υk = −1 : r4 − 1 = 0 (B8)

Υk = −1 ,Υk = 1 : r4 − 1 = 0 (B9)

requires r = 1, as well as a sign change of Υ when re-
flected at the surface. The third group is

Υk = 0 ,Υk = 0 : F
(

φl, θl, φl, θl
)

+
2 + r2

r2
= 0 (B10)

Υk = 0 ,Υk = −1 : F
(

φl, θl, φl, θl
)

+
1

r2
= 0 (B11)

Υk = −1 ,Υk = 0 : F
(

φl, θl, φl, θl
)

+
1

r2
= 0 (B12)

Υk = −1 ,Υk = −1 : F
(

φl, θl, φl, θl
)

+
1 + r4

2r2
= 0,

(B13)

where F
(

φl, θl, φl, θl
)

∈ [−1, 1] is defined after Eq. (34).
Eq. (B10) has no solution for real r, and the remaining
equations have solutions only for r = 1. Thus, there are
only two classes of trajectories giving rise to ABS at zero
energy, the first class given by Eqs. (B8)-(B9) and the
second class given by Eqs. (B11)-(B13).
Fig. 15 shows solutions to Eqs. (B11) - (B13) and Eqs.

(B11) - (B13) for two surface normal directions.

Appendix C: 3D winding number

The 3D winding number is given by32

ν =

∫

BZ

d3k

24π2
Tr

[

ǫabcMaMbMc

]

(C1)

where Ma = q−1∂aq. Introducing the notation q(k) =
C0(k)σ0 + C(k) · σ with C = (C1, C2, C3), and q−1 =
[

C2
0 − |C|2

]−1
(C0σ0 −C · σ), and R =

[

C2
0 − |C|2

]

, and
the 4× 4 matrix

Z =







C0 C1 C2 C3

∂xC0 ∂xC1 ∂xC2 ∂xC3

∂yC0 ∂yC1 ∂yC2 ∂yC3

∂zC0 ∂zC1 ∂zC2 ∂zC3






. (C2)

we find the exact formula for the trace

Tr
[

ǫabcMaMbMc

]

= 12iR−2 det (Z) . (C3)
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FIG. 15. The first row shows th SOC vector field projected on the k = (1, 1, 1) direction for the point group O and indicated
parameters g2. The color coding corresponds to |lkF

|, and the arrows show the direction of lkF
for selected points. Note the

different color scales (blue and red correspond to nonzero local minima and local maxima). The second and third rows show
the angle resolved surface ABS at zero energy for surface normals n = (1, 1, 1) (second row) and n = (0, 1, 2) (third row). The
green and yellow regions are given by solution to Eqs. (B8) and (B9) respectively. The magenta colored dots correspond to
solutions to Eqs. (B11) - (B13). The order parameters for the four columns from left to right correspond to the scaled singlet
to triplet ratios rbulk∆ = {0.74, 0.71, 0.66, 0.70}, respectively. Only one pairing channel is active, and T = 0.2Tc.

1 Ernst Bauer and Manfred Sigrist, eds., in Non-

Centrosymmetric Superconductors, Lecture Notes in
Physics, Vol. 847 (Springer, 2012) 1st ed.

2 Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insu-
lators and superconductors,” Rev. Mod. Phys. 83, 1057–
1110 (2011).

3 Sungkit Yip, “Noncentrosymmetric Superconductors,”
Annu. Rev. Condens. Matter Phys. 5, 15–33 (2014).

4 Y. Ando and L. Fu, “Topological crystalline insulators and
topological superconductors: From concepts to materials,”
Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

5 Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers,
X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt,
J. W. Lynn, and J. Paglione, “Topological RPdBi half-
Heusler semimetals: A new family of noncentrosymmet-
ric magnetic superconductors,” Science Advances 1 (2015),

10.1126/sciadv.1500242.
6 U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, “Chi-
ral Skyrmionic matter in non-centrosymmetric magnets,”
Journal of Physics: Conference Series 303, 012105 (2011).

7 D. Puggioni and J. M. Rondinelli, “Designing a robustly
metallic noncenstrosymmetric ruthenate oxide with large
thermopower anisotropy,” Nat. Commun. 5, 3432 (2014).

8 K. V. Samokhin, “Spinorbit coupling and semiclassical
electron dynamics in noncentrosymmetric metals,” Ann.
Phys. (NY) 324, 2385-2407 (2009).

9 P. W. Anderson, “Structure of ”triplet” superconducting
energy gaps,” Phys. Rev. B 30, 4000–4002 (1984).

10 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt,
A. Gribanov, Yu. Seropegin, H. Noël, M. Sigrist, and
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