170 research outputs found
Applicability of the Fisher Equation to Bacterial Population Dynamics
The applicability of the Fisher equation, which combines diffusion with
logistic nonlinearity, to population dynamics of bacterial colonies is studied
with the help of explicit analytic solutions for the spatial distribution of a
stationary bacterial population under a static mask. The mask protects the
bacteria from ultraviolet light. The solution, which is in terms of Jacobian
elliptic functions, is used to provide a practical prescription to extract
Fisher equation parameters from observations and to decide on the validity of
the Fisher equation.Comment: 5 pages, 3 figs. include
Nonuniversality in quantum wires with off-diagonal disorder: a geometric point of view
It is shown that, in the scaling regime, transport properties of quantum
wires with off-diagonal disorder are described by a family of scaling equations
that depend on two parameters: the mean free path and an additional continuous
parameter. The existing scaling equation for quantum wires with off-diagonal
disorder [Brouwer et al., Phys. Rev. Lett. 81, 862 (1998)] is a special point
in this family. Both parameters depend on the details of the microscopic model.
Since there are two parameters involved, instead of only one, localization in a
wire with off-diagonal disorder is not universal. We take a geometric point of
view and show that this nonuniversality follows from the fact that the group of
transfer matrices is not semi-simple. Our results are illustrated with
numerical simulations for a tight-binding model with random hopping amplitudes.Comment: 12 pages, RevTeX; 3 figures included with eps
The Random-bond Potts model in the large-q limit
We study the critical behavior of the q-state Potts model with random
ferromagnetic couplings. Working with the cluster representation the partition
sum of the model in the large-q limit is dominated by a single graph, the
fractal properties of which are related to the critical singularities of the
random Potts model. The optimization problem of finding the dominant graph, is
studied on the square lattice by simulated annealing and by a combinatorial
algorithm. Critical exponents of the magnetization and the correlation length
are estimated and conformal predictions are compared with numerical results.Comment: 7 pages, 6 figure
Resonant tunneling and the multichannel Kondo problem: the quantum Brownian motion description
We study mesoscopic resonant tunneling as well as multichannel Kondo problems
by mapping them to a first-quantized quantum mechanical model of a particle
moving in a multi-dimensional periodic potential with Ohmic dissipation. From a
renormalization group analysis, we obtain phase diagrams of the quantum
Brownian motion model with various lattice symmetries. For a symmorphic
lattice, there are two phases at T=0: a localized phase in which the particle
is trapped in a potential minimum, and a free phase in which the particle is
unaffected by the periodic potential. For a non-symmorphic lattice, however,
there may be an additional intermediate phase in which the particle is neither
localized nor completely free. The fixed point governing the intermediate phase
is shown to be identical to the well-known multichannel Kondo fixed point in
the Toulouse limit as well as the resonance fixed point of a quantum dot model
and a double-barrier Luttinger liquid model. The mapping allows us to compute
the fixed-poing mobility of the quantum Brownian motion model exactly,
using known conformal-field-theory results of the Kondo problem. From the
mobility, we find that the peak value of the conductance resonance of a
spin-1/2 quantum dot problem is given by . The scaling form of the
resonance line shape is predicted
Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states
When the two-dimensional random-bond Ising model is represented as a
noninteracting fermion problem, it has the same symmetries as an ensemble of
random matrices known as class D. A nonlinear sigma model analysis of the
latter in two dimensions has previously led to the prediction of a metallic
phase, in which the fermion eigenstates at zero energy are extended. In this
paper we argue that such behavior cannot occur in the random-bond Ising model,
by showing that the Ising spin correlations in the metallic phase violate the
bound on such correlations that results from the reality of the Ising
couplings. Some types of disorder in spinless or spin-polarized p-wave
superconductors and paired fractional quantum Hall states allow a mapping onto
an Ising model with real but correlated bonds, and hence a metallic phase is
not possible there either. It is further argued that vortex disorder, which is
generic in the fractional quantum Hall applications, destroys the ordered or
weak-pairing phase, in which nonabelian statistics is obtained in the pure
case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe
Crossover and self-averaging in the two-dimensional site-diluted Ising model
Using the newly proposed probability-changing cluster (PCC) Monte Carlo
algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since
we can tune the critical point of each random sample automatically with the PCC
algorithm, we succeed in studying the sample-dependent and the sample
average of physical quantities at each systematically. Using the
finite-size scaling (FSS) analysis for , we discuss the importance of
corrections to FSS both in the strong-dilution and weak-dilution regions. The
critical phenomena of the 2D site-diluted Ising model are shown to be
controlled by the pure fixed point. The crossover from the percolation fixed
point to the pure Ising fixed point with the system size is explicitly
demonstrated by the study of the Binder parameter. We also study the
distribution of critical temperature . Its variance shows the power-law
dependence, , and the estimate of the exponent is consistent
with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700
(1996)]. Calculating the relative variance of critical magnetization at the
sample-dependent , we show that the 2D site-diluted Ising model
exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.
Separation of spin and charge in paired spin-singlet quantum Hall states
We propose a series of paired spin-singlet quantum Hall states, which exhibit
a separation of spin and charge degrees of freedom. The fundamental excitations
over these states, which have filling fraction \nu=2/(2m+1) with m an odd
integer, are spinons (spin-1/2 and charge zero) or fractional holons (charge
+/- 1/(2m+1) and spin zero). The braid statistics of these excitations are
non-abelian. The mechanism for the separation of spin and charge in these
states is topological: spin and charge excitations are liberated by binding to
a vortex in a p-wave pairing condensate. We briefly discuss related, abelian
spin-singlet states and possible transitions.Comment: 4 pages, uses revtex
Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem
The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann's 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much
misunderstood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the one
he calls the "quantum H-theorem", is actually a much weaker statement than
Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum
ergodic theorem", is a beautiful and very non-trivial result. It expresses a
fact we call "normal typicality" and can be summarized as follows: For a
"typical" finite family of commuting macroscopic observables, every initial
wave function from a micro-canonical energy shell so evolves that for
most times in the long run, the joint probability distribution of these
observables obtained from is close to their micro-canonical
distribution.Comment: 34 pages LaTeX, no figures; v2: minor improvements and additions. The
English translation of von Neumann's article is available as arXiv:1003.213
Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search
By applying Grover's quantum search algorithm to the lattice algorithms of
Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and
Stehl\'{e}, we obtain improved asymptotic quantum results for solving the
shortest vector problem. With quantum computers we can provably find a shortest
vector in time , improving upon the classical time
complexity of of Pujol and Stehl\'{e} and the of Micciancio and Voulgaris, while heuristically we expect to find a
shortest vector in time , improving upon the classical time
complexity of of Wang et al. These quantum complexities
will be an important guide for the selection of parameters for post-quantum
cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
Schwinger-Keldysh Approach to Disordered and Interacting Electron Systems: Derivation of Finkelstein's Renormalization Group Equations
We develop a dynamical approach based on the Schwinger-Keldysh formalism to
derive a field-theoretic description of disordered and interacting electron
systems. We calculate within this formalism the perturbative RG equations for
interacting electrons expanded around a diffusive Fermi liquid fixed point, as
obtained originally by Finkelstein using replicas. The major simplifying
feature of this approach, as compared to Finkelstein's is that instead of replicas, we only need to consider N=2 species. We compare the dynamical
Schwinger-Keldysh approach and the replica methods, and we present a simple and
pedagogical RG procedure to obtain Finkelstein's RG equations.Comment: 22 pages, 14 figure
- …