186 research outputs found

    Optimal Execution with Dynamic Order Flow Imbalance

    Full text link
    We examine optimal execution models that take into account both market microstructure impact and informational costs. Informational footprint is related to order flow and is represented by the trader's influence on the flow imbalance process, while microstructure influence is captured by instantaneous price impact. We propose a continuous-time stochastic control problem that balances between these two costs. Incorporating order flow imbalance leads to the consideration of the current market state and specifically whether one's orders lean with or against the prevailing order flow, key components often ignored by execution models in the literature. In particular, to react to changing order flow, we endogenize the trading horizon TT. After developing the general indefinite-horizon formulation, we investigate several tractable approximations that sequentially optimize over price impact and over TT. These approximations, especially a dynamic version based on receding horizon control, are shown to be very accurate and connect to the prevailing Almgren-Chriss framework. We also discuss features of empirical order flow and links between our model and "Optimal Execution Horizon" by Easley et al (Mathematical Finance, 2013).Comment: 31 pages, 8 figure

    Sequential Design for Ranking Response Surfaces

    Full text link
    We propose and analyze sequential design methods for the problem of ranking several response surfaces. Namely, given L≥2L \ge 2 response surfaces over a continuous input space X\cal X, the aim is to efficiently find the index of the minimal response across the entire X\cal X. The response surfaces are not known and have to be noisily sampled one-at-a-time. This setting is motivated by stochastic control applications and requires joint experimental design both in space and response-index dimensions. To generate sequential design heuristics we investigate stepwise uncertainty reduction approaches, as well as sampling based on posterior classification complexity. We also make connections between our continuous-input formulation and the discrete framework of pure regret in multi-armed bandits. To model the response surfaces we utilize kriging surrogates. Several numerical examples using both synthetic data and an epidemics control problem are provided to illustrate our approach and the efficacy of respective adaptive designs.Comment: 26 pages, 7 figures (updated several sections and figures
    • …
    corecore