8 research outputs found

    Protective effects of lipoic acid on chrysene-induced toxicity on Müller cells in vitro.

    Get PDF
    PurposeThis study evaluates the toxic effects of chrysene (a component from cigarette smoke) on Müller cells (MIO-M1) in vitro and investigates whether the inhibitor lipoic acid can reverse the chrysene-induced toxic effects.MethodsMIO-M1 cells were exposed to varying concentrations of chrysene with or without lipoic acid. Cell viability was measured by a trypan blue dye exclusion assay. Caspase-3/7 activity was measured by a fluorochrome assay. Lactate dehydrogenase (LDH) release was quantified by an LDH assay. The production of reactive oxygen/nitrogen species (ROS/RNS) was measured with a 2',7'-dichlorodihydrofluorescein diacetate dye assay. Mitochondrial membrane potential (ΔΨm) was measured using the JC-1 assay. Intracellular ATP content was determined by the ATPLite kit.ResultsMIO-M1 cells showed significantly decreased cell viability, increased caspase-3/7 activity, LDH release at the highest chrysene concentration, elevated ROS/RNS levels, decreased ΔΨm value, and decreased intracellular ATP content after exposure to 300, 500, and 1,000 µM chrysene compared with the control. Pretreatment with 80 µM lipoic acid reversed loss of cell viability in 500-µM-chrysene-treated cultures (24.7%, p<0.001). Similarly, pretreatment with 80 µM lipoic acid before chrysene resulted in decreased caspase-3/7 activities (75.7%, p<0.001), decreased ROS/RNS levels (80.02%, p<0.001), increased ΔΨm values (86%, p<0.001), and increased ATP levels (40.5%, p<0.001) compared to 500-µM-chrysene-treated cultures.ConclusionsChrysene, a component of cigarette smoke, can diminish cell viability in MIO-M1 cells in vitro by apoptosis at the lower concentrations of Chrysene (300 and 500 µM) and necrosis at the highest concentration. Moreover, mitochondrial function was particularly altered. However, lipoic acid can partially reverse the cytotoxic effect of chrysene. Lipoic acid administration may reduce or prevent Müller cell degeneration in retinal degenerative disorders

    Effects of Benzo(e)pyrene on reactive oxygen/nitrogen species and inflammatory cytokines induction in human RPE cells and attenuation by mitochondrial-involved mechanism

    No full text
    Purpose: To identify inhibitors that could effectively lower reactive oxygen/nitrogen species (ROS/RNS), complement and inflammatory cytokine levels induced by Benzo(e)pyrene [B(e)p], an element of cigarette smoke, in human retinal pigment epithelial cells (ARPE-19) in vitro. Methods: ARPE-19 cells were treated for 24 hours with 200 μM, 100 μM, and 50 μM B(e)p or DMSO (dimethyl sulfoxide)-equivalent concentrations. Some cultures were pre-treated with ROS/RNS inhibitors (NG nitro-L-arginine, inhibits nitric oxide synthase; Apocynin, inhibits NADPH oxidase; Rotenone, inhibits mitochondrial complex I; Antimycin A, inhibits mitochondria complex III) and ROS/RNS levels were measured with a fluorescent H 2 DCFDA assay. Multiplex bead arrays were used to measure levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Transforming Growth Factor alpha (TGF-α) and Vascular Endothelial Growth Factor (VEGF). IL-6 levels were also measured by an enzyme-linked immunosorbent assay. Real-time qPCR analyses were performed with primers for C3 (component 3), CFH (inhibits complement activation), CD59 (inhibitor of the complement membrane attack complex (MAC)) and CD55/DAF (accelerates decay of target complement target proteins). Results: The ARPE-19 cultures treated with B(e)p showed significantly increased ROS/RNS levels (P < 0.001), which were then partially reversed by 6 μM Antimycin A (19%, P = 0.03), but not affected by the other ROS/RNS inhibitors. The B(e)p treated cultures demonstrated increased levels of IL-6 (33%; P = 0.016) and GM-CSF (29%; P = 0.0001) compared to DMSO-equivalent controls, while the expression levels for components of the complement pathway (C3, CFH, CD59 and CD55/DAF) were not changed. Conclusion: The cytotoxic effects of B(e)p include elevated ROS/RNS levels along with pro-inflammatory IL-6 and GM-CSF proteins. Blocking the Qi site of cytochrome c reductase (complex III) with Antimycin A led to partial reduction in B(e)p induced ROS production. Our findings suggest that inhibitors for multiple pathways would be necessary to protect the retinal cells from B(e)p induced toxicity

    Effects of Benzo(e)pyrene on Reactive Oxygen/Nitrogen Species and Inflammatory Cytokines Induction in Human RPE Cells and Attenuation by Mitochondrial-involved Mechanism.

    No full text
    PurposeTo identify inhibitors that could effectively lower reactive oxygen/nitrogen species (ROS/RNS), complement and inflammatory cytokine levels induced by Benzo(e)pyrene [B(e)p], an element of cigarette smoke, in human retinal pigment epithelial cells (ARPE-19) in vitro.MethodsARPE-19 cells were treated for 24 hours with 200 μM, 100 μM, and 50 μM B(e)p or DMSO (dimethyl sulfoxide)-equivalent concentrations. Some cultures were pre-treated with ROS/RNS inhibitors (NG nitro-L-arginine, inhibits nitric oxide synthase; Apocynin, inhibits NADPH oxidase; Rotenone, inhibits mitochondrial complex I; Antimycin A, inhibits mitochondria complex III) and ROS/RNS levels were measured with a fluorescent H2 DCFDA assay. Multiplex bead arrays were used to measure levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Transforming Growth Factor alpha (TGF-α) and Vascular Endothelial Growth Factor (VEGF). IL-6 levels were also measured by an enzyme-linked immunosorbent assay. Real-time qPCR analyses were performed with primers for C3 (component 3), CFH (inhibits complement activation), CD59 (inhibitor of the complement membrane attack complex (MAC)) and CD55/DAF (accelerates decay of target complement target proteins).ResultsThe ARPE-19 cultures treated with B(e)p showed significantly increased ROS/RNS levels (P &lt; 0.001), which were then partially reversed by 6 μM Antimycin A (19%, P = 0.03), but not affected by the other ROS/RNS inhibitors. The B(e)p treated cultures demonstrated increased levels of IL-6 (33%; P = 0.016) and GM-CSF (29%; P = 0.0001) compared to DMSO-equivalent controls, while the expression levels for components of the complement pathway (C3, CFH, CD59 and CD55/DAF) were not changed.ConclusionThe cytotoxic effects of B(e)p include elevated ROS/RNS levels along with pro-inflammatory IL-6 and GM-CSF proteins. Blocking the Qi site of cytochrome c reductase (complex III) with Antimycin A led to partial reduction in B(e)p induced ROS production. Our findings suggest that inhibitors for multiple pathways would be necessary to protect the retinal cells from B(e)p induced toxicity
    corecore