10 research outputs found

    Aptamer therapeutics: the 21st century\u27s magic bullet of nanomedicine

    Full text link
    Aptamers, also known as chemical antibodies, are short single-stranded DNA, RNA or peptide molecules. These molecules can fold into complex three-dimensional structures and bind to target molecules with high affinity and specificity. The nucleic acid aptamers are selected from combinatorial libraries by an iterative in vitro selection procedure known as systematic evolution of ligands by exponential enrichment (SELEX). As a new class of therapeutics and drug targeting entities, bivalent and multivalent aptamer-based molecules are emerging as highly attractive alternatives to monoclonal antibodies as targeted therapeutics.Aptamers have several advantages, offering the possibility of overcoming limitations of antibodies: 1) they can be selected against toxic or non-immunogenic targets; 2) aptamers can be chemically modified by using modified nucleotides to enhance their stability in biological fluids or via incorporating reporter molecules, radioisotopes and functional groups for their detection and immobilization; 3) they have very low immunogenicity; 4) they display high stability at room temperature, in extreme pH, or solvent; 5) once selected, they can be chemically synthesized free from cell- culturederived contaminants, and they can be manufactured at any time, in large amounts, at relatively low cost and reproducibly; 6) they are smaller and thus can diffuse more rapidly into tissues and organs, leading to faster targeting in drug delivery; 7) they have lower molecular weight that can lead to faster body clearance, resulting in a low background noise for imaging and minimizing the radiation dose to the patient in diagnostic imaging. Thus, the high selectivity and sensitivity, ease of screening and production, chemical versatility as well as stability make aptamers a class of highly attractive agents for the development of novel therapeutics, targeted drug delivery vehicles and molecular imaging.In the review, we will discuss the latest technological advances in developing aptamers, its application as a novel class of drug on its own, as well as in surface functionalization of both polymer nanoparticles or nanoliposomes in the treatment of cancer, viral and autoimmune diseases

    Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens

    Full text link
    Low pathogenicity avian influenza viruses (LPAIVs) are generally asymptomatic in their natural avian hosts. LPAIVs can evolve into highly pathogenic forms, which can affect avian and human populations with devastating consequences. The switch to highly pathogenic avian influenza virus (HPAIV) from LPAIV precursors requires the acquisition of multiple basic amino acids in the haemagglutinin cleavage site (HACS) motif. Through reverse genetics of an H5N1 HPAIV, and experimental infection of chickens, we determined that viruses containing five or more basic amino acids in the HACS motif were preferentially selected over those with three to four basic amino acids, leading to rapid replacement with virus types containing extended HACS motifs. Conversely, viruses harbouring low pathogenicity motifs containing two basic amino acids did not readily evolve to extended forms, suggesting that a single insertion of a basic amino acid into the cleavage site motif of low-pathogenic viruses may lead to escalating selection for extended motifs. Our results may explain why mid-length forms are rarely detected in nature. The stability of the short motif suggests that pathogenicity switching may require specific conditions of intense selection pressure (such as with high host density) to boost selection of the initial mid-length HACS forms

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned

    Pathogenesis of avian influenza: role of the haemagglutinin cleavage site motif

    Full text link
     The pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) is highly dependent on the presence of a polybasic haemagglutinin cleavage site (HACS) motif. This study demonstrated that HPAIV replication in chickens occurs primarily in vascular endothelium and is modulated by the molecular composition of the HACS motif

    Influenza A Virus Hemagglutinin and Other Pathogen Glycoprotein Interactions with NK Cell Natural Cytotoxicity Receptors NKp46, NKp44, and NKp30

    No full text
    Natural killer (NK) cells are part of the innate immunity repertoire, and function in the recognition and destruction of tumorigenic and pathogen-infected cells. Engagement of NK cell activating receptors can lead to functional activation of NK cells, resulting in lysis of target cells. NK cell activating receptors specific for non-major histocompatibility complex ligands are NKp46, NKp44, NKp30, NKG2D, and CD16 (also known as FcγRIII). The natural cytotoxicity receptors (NCRs), NKp46, NKp44, and NKp30, have been implicated in functional activation of NK cells following influenza virus infection via binding with influenza virus hemagglutinin (HA). In this review we describe NK cell and influenza A virus biology, and the interactions of influenza A virus HA and other pathogen lectins with NK cell natural cytotoxicity receptors (NCRs). We review concepts which intersect viral immunology, traditional virology and glycobiology to provide insights into the interactions between influenza virus HA and the NCRs. Furthermore, we provide expert opinion on future directions that would provide insights into currently unanswered questions

    Influenza A Virus Hemagglutinin and Other Pathogen Glycoprotein Interactions with NK Cell Natural Cytotoxicity Receptors NKp46, NKp44, and NKp30

    No full text
    Natural killer (NK) cells are part of the innate immunity repertoire, and function in the recognition and destruction of tumorigenic and pathogen-infected cells. Engagement of NK cell activating receptors can lead to functional activation of NK cells, resulting in lysis of target cells. NK cell activating receptors specific for non-major histocompatibility complex ligands are NKp46, NKp44, NKp30, NKG2D, and CD16 (also known as FcγRIII). The natural cytotoxicity receptors (NCRs), NKp46, NKp44, and NKp30, have been implicated in functional activation of NK cells following influenza virus infection via binding with influenza virus hemagglutinin (HA). In this review we describe NK cell and influenza A virus biology, and the interactions of influenza A virus HA and other pathogen lectins with NK cell natural cytotoxicity receptors (NCRs). We review concepts which intersect viral immunology, traditional virology and glycobiology to provide insights into the interactions between influenza virus HA and the NCRs. Furthermore, we provide expert opinion on future directions that would provide insights into currently unanswered questions

    Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    Full text link
    The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio-economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host-pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With &gt;75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population.<br /

    Characterizing Emerging Canine H3 Influenza Viruses.

    No full text
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned
    corecore