10 research outputs found

    Using Microsoft HoloLens to improve memory recall in anatomy and physiology: A pilot study to examine the efficacy of using augmented reality in education

    Get PDF
    This paper explores the use of augmented reality (AR) to improve memory recall and learning experiences in human anatomy and physiology. In particular, the opportunity to assess new computer technologies to improve learning environments may allow for an improvement in self-efficacy and a reduction in test anxiety. Twenty-two undergraduates participated in one of two study groups, the Microsoft HoloLens group (HLNS) or the traditional projector-based Microsoft Power Point group (PPT). Each group completed a five-minute, three-subject anatomy identification and brain physiology memory test. After a three-minute time delay, participants completed a fill-in-the-blank anatomy identification test and brain physiology question test, followed by questionnaires for systems self-efficacy and test anxiety. Results indicated the PPT group significantly outperformed the HLNS group in the brain lobe identification portion of the exam and had reported higher mean test anxiety scores (though not high enough to be considered unhealthy levels). However, the HLNS group showed a significantly higher preference to the learning experience compared to the PPT group based on the systems self-efficacy questionnaire. This pilot study demonstrates an opportunity for the HLNS to use used in learning environments to improve the psychological aspects of studying and test taking

    The Effect of Driver Mass and Shaft Length on Initial Golf Ball Launch Conditions: A Designed Experimental Study

    Get PDF
    AbstractThe influence of golf driver mass and shaft length on initial golf ball launch conditions was investigated. A series of carefully selected player tests were used to isolate the coupled influence of club mass and shaft length on initial ball velocity, spin rates, launch angle, and dispersion of impacts across the clubface. The ranges of selected club masses and shaft lengths were typical of those found in currently available drivers. While longer, lighter clubs generally led to higher ball speeds for most test golfers, those combinations of club mass and club length that minimized spin rates resulted in the greatest estimated total shot distance. Not surprisingly, use of longer drivers led to a slightly larger dispersion of impacts over the clubface. Interestingly, individual golfers tended to miss in the same region of the clubface irrespective of the club length, i.e., they compensated for changes in club mass and length when swinging. Employing the methodology outlined here, it may be possible to tailor golf club designs in order to obtain enhanced golf ball launch characteristics for a range of golfers. Such efforts may facilitate golf club design by establishing relationships between mass and configuration parameters that lead to improved driver performance

    Jumping Performance of Elite NCAA Division 1 Student-athletes: The Effect of Basketball Shoe Design – Part I

    No full text
    Background: Assessment of basketball shoes as personal protection equipment (PPE) at the collegiate level is unique. Objective: The purpose of Part I in this pilot study was to examine the effect of shoe design on jump height in elite male and female National Collegiate Athletic Association (NCAA) Division 1 basketball student-athletes. Method: Each team selected two pairs of AdidasTM branded shoes. The male student-athletes selected the AdidasTM Harden Vol. 3 and the AdidasTM SM Pro basketball shoes. The female student-athletes selected the AdidasTM Harden Vol. 3 and the AdidasTM Captain Marvel basketball shoes. A total of sixteen basketball student-athletes (six males, ten females) performed an acute series of four styled basketball jumps on two ForceDecksTM Force Platforms while trying to maximize jump height by tapping VertecTM Jump Vanes. Two trials were performed in each shoe and for each type of jump which included a countermovement jump, drop jump from 30cm, step and jump, and a series of plyometric jumps. Results: The results of this pilot study indicated a non-significant effect of basketball shoe design on jump height while performing an acute series of basketball style jumps for either the male or female basketball student-athletes. However, there were significant differences in jump height and peak power between the male and female basketball student-athletes (p = 0.001). Conclusion: In addition to the results, the use of quantitative performance testing on the effectiveness of basketball shoe designs as PPE may assist in the mitigation of non-contact ankle and lower limb injuries

    Perception of Comfort, Fit, and Jumping Performance of Elite NCAA Division 1 Student-athletes: The Effect of Basketball Shoe Design – Part II

    No full text
    Background: Assessing basketball shoe comfort and fit as personal protection equipment (PPE) at the collegiate level is unique. Objective: The purpose of Part II in this pilot study was to examine the effect of shoe design on the perception of comfort and fit after performing an acute series of jumps in elite male and female National Collegiate Athletic Association (NCAA) Division 1 basketball student-athletes. Method: A total of sixteen basketball student-athletes (six males, ten females) performed two rounds of acute series of four styled basketball jumps on two ForceDecksTM Force Platforms while trying to maximize jump height by tapping VertecTM Jump Vanes. The male student-athletes selected the AdidasTM Harden Vol. 3 and the AdidasTM SM Pro basketball shoes. The female student-athletes selected the Adidas Harden Vol. 3 and the Adidas Captain Marvel basketball shoes. Upon completion of each round of jumps, the student-athlete recorded their perception of comfort on a 110mm Visual Analog Scale (VAS) and fit on a seven-point Likert rating scale based against their most comfortable basketball shoes ever worn. Results: Results of this pilot study reported, on average, the male student-athletes preferred comfort and fit of the Adidas SM Pro basketball shoes and the female student-athletes preferred the Adidas Harden Vol. 3 basketball shoe, though differences were non-significant at p > 0.05. Conclusion: The use of a human factors assessment tool to evaluate basketball shoe comfort and fit and the influence of rated comfort and fit parameters on basketball jumping performance proved viable

    Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation

    No full text
    The utilization of commercially available virtual reality (VR) environments has increased over the last decade. Motion sickness that is commonly reported while using VR devices is still prevalent and reported at a higher than acceptable rate. The virtual reality induced symptoms and effects (VRISE) are considered the largest barrier to widespread usage. Current measurement methods have uniform use across studies but are subjective and are not designed for VR. VRISE and other motion sickness symptom profiles are similar but not exactly the same. Common objective physiological and biomechanical as well as subjective perception measures correlated with VRISE should be used instead. Many physiological biomechanical and subjective changes evoked by VRISE have been identified. There is a great difficulty in claiming that these changes are directly caused by VRISE due to numerous other factors that are known to alter these variables resting states. Several theories exist regarding the causation of VRISE. Among these is the sensory conflict theory resulting from differences in expected and actual sensory input. Reducing these conflicts has been shown to decrease VRISE. User characteristics contributing to VRISE severity have shown inconsistent results. Guidelines of field of view (FOV), resolution, and frame rate have been developed to prevent VRISE. Motion-to-photons latency movement also contributes to these symptoms and effects. Intensity of content is positively correlated to VRISE, as is the speed of navigation and oscillatory displays. Duration of immersion shows greater VRISE, though adaptation has been shown to occur from multiple immersions. The duration of post immersion VRISE is related to user history of motion sickness and speed of onset. Cognitive changes from VRISE include decreased reaction time and eye hand coordination. Methods to lower VRISE have shown some success. Postural control presents a potential objective variable for predicting and monitoring VRISE intensity. Further research is needed to lower the rate of VRISE symptom occurrence as a limitation of use

    Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle

    No full text
    Interviews from strength and conditioning coaches across all levels of athletic competition identified their two biggest concerns with the current state of wearable technology: (a) the lack of solutions that accurately capture data “from the ground up” and (b) the lack of trust due to inconsistent measurements. The purpose of this research is to investigate the use of liquid metal sensors, specifically Liquid Wire sensors, as a potential solution for accurately capturing ankle complex movements such as plantar flexion, dorsiflexion, inversion, and eversion. Sensor stretch linearity was validated using a Micro-Ohm Meter and a Wheatstone bridge circuit. Sensors made from different substrates were also tested and discovered to be linear at multiple temperatures. An ankle complex model and computing unit for measuring resistance values were developed to determine sensor output based on simulated plantar flexion movement. The sensors were found to have a significant relationship between the positional change and the resistance values for plantar flexion movement. The results of the study ultimately confirm the researchers’ hypothesis that liquid metal sensors, and Liquid Wire sensors specifically, can serve as a mitigating substitute for inertial measurement unit (IMU) based solutions that attempt to capture specific joint angles and movements

    Closing the Wearable Gap—Part VI: Human Gait Recognition Using Deep Learning Methodologies

    No full text
    A novel wearable solution using soft robotic sensors (SRS) has been investigated to model foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic movements was quantified during the gait movements of 20 participants on a flat surface as well as a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three different approaches were employed to quantify the relationship between the SRS and the 3D motion capture system, including multivariable linear regression, an artificial neural network (ANN), and a time-series long short-term memory (LSTM) network. Models were compared based on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal and frontal plane, collected from the motion capture system. There was not a significant difference between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting from multivariable linear regression and LSTM, respectively. The low error rate of the models revealed the high performance of SRS in capturing foot-ankle kinematics during the human gait cycle

    Closing the Wearable Gap-Part VII: A Retrospective of Stretch Sensor Tool Kit Development for Benchmark Testing

    No full text
    This paper presents a retrospective of the benchmark testing methodologies developed and accumulated into the stretch sensor tool kit (SSTK) by the research team during the Closing the Wearable Gap series of studies. The techniques developed to validate stretchable soft robotic sensors (SRS) as a means for collecting human kinetic and kinematic data at the foot-ankle complex and at the wrist are reviewed. Lessons learned from past experiments are addressed, as well as what comprises the current SSTK based on what the researchers learned over the course of multiple studies. Three core components of the SSTK are featured: (a) material testing tools, (b) data analysis software, and (c) data collection devices. Results collected indicate that the stretch sensors are a viable means for predicting kinematic data based on the most recent gait analysis study conducted by the researchers (average root mean squared error or RMSE = 3.63°). With the aid of SSTK defined in this study summary and shared with the academic community on GitHub, researchers will be able to undergo more rigorous validation methodologies of SRS validation. A summary of the current state of the SSTK is detailed and includes insight into upcoming experiments that will utilize more sophisticated techniques for fatigue testing and gait analysis, utilizing SRS as the data collection solution

    Validity and Reliability of StriveTM Sense3 for Muscle Activity Monitoring During the Squat Exercise

    No full text
    Background: Recent innovations in surface electromyographic (sEMG) technology have enabled the measurement of muscle activity using smart textiles. Objective: In this study, the StriveTM Sense3 performance monitoring system is evaluated against a research-grade system, NoraxonTM, in measuring activity during the back squat exercise. Method: Seventeen participants performed three total trials of the squat exercise with a progressive load for individual trials equal to 30%, 60%, and 80% of their estimated maximum 1RM (one-repetition maximum). sEMG measurements from the rectus femoris were captured for the left and right leg by both systems. Pearson product-moment correlation coefficient (r) and intraclass correlation coefficient (ICC) values were computed for each trial to assess concurrent validity and interrater reliability of the StriveTM Sense3 device. Additionally, five coaches at the collegiate- and professional-level of Men’s Basketball speak from an autoethnographic frame to the findings from this study. Results: Results ranged from “Poor” to “Excellent” validity and “Poor to Moderate” to “Excellent” reliability, with a majority of trials achieving “Good” or better results across all loads [93% trials: r = 0.7; 87% trials: lower ICC 95% CI bound = 0.75 (absolute sEMG); 98% trials: lower ICC 95% CI bound = 0.75 (normalized sEMG)]. Higher validity and reliability for medium and heavy loads were observed in comparison to the light load, and several outliers indicate the need for coaches to lubricate sensors and ensure proper fit to collect accurate data. Conclusion: Examining results alongside practitioner feedback indicate the StriveTM Sense3 system is capable of tracking sEMG activity in comparison to a research-grade system
    corecore