10 research outputs found

    Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity

    Get PDF
    Amplification and overexpression of ErbB2 strongly correlates with aggressive breast cancers. A deeper understanding of pathways downstream of ErbB2 signaling that are required for the transformation of human mammary epithelial cells will identify novel strategies for therapeutic intervention in breast cancer. Using an inducible activation of ErbB2 autophosphorylation qsite mutants and the MCF-10A three-dimensional (3D) culture system, we investigated pathways used by ErbB2 to transform the epithelia. We report that ErbB2 induces cell proliferation and loss of 3D organization by redundant mechanisms, whereas it disrupts apical basal polarity and inhibits apoptosis using Tyr 1201 and Tyr 1226/7, respectively. Signals downstream of Tyr 1226/7 were also sufficient to confer paclitaxel resistance. The Tyr 1226/7 binds Shc, and the knockdown of Shc blocks the ability of ErbB2 to inhibit apoptosis and mediate paclitaxel resistance. Tyr 1226/7 is known to activate the Ras/Erk pathway; however, paclitaxel resistance did not correlate with the activation of Erk or Akt, suggesting the presence of a novel mechanism. Thus, our results show that targeting pathways used by ErbB2 to inhibit cell death is a better option than targeting cell proliferation pathways. Furthermore, we identify a novel function for Shc as a regulator of apoptosis and drug resistance in human mammary epithelial cells transformed by ErbB2. Oncogene (2010) 29, 174-187; doi:10.1038/onc.2009.312; published online 12 October 200

    Immune Dysregulation in Patients Persistently Infected with Human Papillomaviruses 6 and 11

    Get PDF
    Human Papillomaviruses (HPVs) 6 and 11 are part of a large family of small DNA viruses, some of which are commensal. Although much of the population can contain or clear infection with these viruses, there is a subset of individuals who develop persistent infection that can cause significant morbidity and on occasion mortality. Depending on the site of infection, patients chronically infected with these viruses develop either recurrent, and on occasion, severe genital warts or recurrent respiratory papillomas that can obstruct the upper airway. The HPV-induced diseases described are likely the result of a complex and localized immune suppressive milieu that is characteristic of patients with persistent HPV infection. We review data that documents impaired Langerhans cell responses and maturation, describes the polarized adaptive T-cell immune responses made to these viruses, and the expression of class select II MHC and KIR genes that associate with severe HPV6 and 11 induced disease. Finally, we review evidence that documents the polarization of functional TH2 and T-regulatory T-cells in tissues persistently infected with HPV6 and 11, and we review evidence that there is suppression of natural killer cell function. Together, these altered innate and adaptive immune responses contribute to the cellular and humoral microenvironment that supports HPV 6 and 11-induced disease

    Poly(I:C) induces controlled release of IL-36gamma from keratinocytes in the absence of cell death

    Get PDF
    The epithelium is part of an integrated immune system where cytokines, toll-like receptors and their ligands, and extracellular vesicles play a crucial role in initiating an innate immune response. IL-36gamma is a pro-inflammatory member of the IL-1 family that is mainly expressed by epithelial cells, but regulation of its expression and release are only beginning to be understood. Previous studies reported that IL-36gamma is abundant in recurrent respiratory papillomatosis, a rare but devastating disease caused by human papillomaviruses (HPV) types 6 and 11, in which papillomas recurrently grow in and block the airway. Despite the overexpression of IL-36gamma, papilloma tissues show no evidence of inflammation, possibly due to suppression of its release by HPVs. We have used primary human foreskin keratinocytes as a model to study IL-36gamma regulation in normal epithelial cells. Low doses of poly(I:C) mediate expression and release of IL-36gamma without inducing the cell death reported by those using high doses. PKR, an enzyme required for inflammasome activation, does not contribute to controlled release of IL36gamma. The keratinocytes secrete IL-36gamma in two forms, soluble and in extracellular vesicles. We conclude that there are two separately regulated pathways for the controlled secretion of IL-36gamma from keratinocytes, which could contribute to the modulation of both local and systemic immune responses to viruses and other pathogens

    Immune Dysregulation in Patients Persistently Infected with Human Papillomaviruses 6 and 11

    No full text
    Human Papillomaviruses (HPVs) 6 and 11 are part of a large family of small DNA viruses, some of which are commensal. Although much of the population can contain or clear infection with these viruses, there is a subset of individuals who develop persistent infection that can cause significant morbidity and on occasion mortality. Depending on the site of infection, patients chronically infected with these viruses develop either recurrent, and on occasion, severe genital warts or recurrent respiratory papillomas that can obstruct the upper airway. The HPV-induced diseases described are likely the result of a complex and localized immune suppressive milieu that is characteristic of patients with persistent HPV infection. We review data that documents impaired Langerhans cell responses and maturation, describes the polarized adaptive T-cell immune responses made to these viruses, and the expression of class select II MHC and KIR genes that associate with severe HPV6 and 11 induced disease. Finally, we review evidence that documents the polarization of functional TH2 and T-regulatory T-cells in tissues persistently infected with HPV6 and 11, and we review evidence that there is suppression of natural killer cell function. Together, these altered innate and adaptive immune responses contribute to the cellular and humoral microenvironment that supports HPV 6 and 11-induced disease

    Constitutive Overexpression of the Oncogene Rac1 in the Airway of Recurrent Respiratory Papillomatosis Patients Is a Targetable Host-Susceptibility Factor

    No full text
    Recurrent respiratory papillomatosis (RRP) is caused by human papillomaviruses (HPVs), primarily types 6 and 11. The disease is characterized by multiple recurrences of airway papillomas, resulting in high levels of morbidity and significant mortality. The prevalence of latent HPV in the larynx of the general population is much greater than the prevalence of RRP, suggesting a host-susceptibility factor for disease. We report that the oncogene Rac1 and its downstream product cyclooxygenase-2 (COX-2) are both constitutively expressed at high levels throughout the airway of these patients, independent of active HPV infection. Use of the COX-2 inhibitor celecoxib in primary papilloma cell culture resulted in the downregulation of HPV transcription. Furthermore, a proof-of-principle study treating three patients with severe RRP with celecoxib resulted in remission of disease in all cases. Therefore, we have identified the first pharmacologically targetable host-susceptibility pathway that contributes to RRP recurrence
    corecore