18 research outputs found

    Antibodies for immunolabeling by light and electron microscopy : not for the faint hearted

    Get PDF
    Reliable antibodies represent crucial tools in the arsenal of the cell biologist and using them to localize antigens for immunocytochemistry is one of their most important applications. However, antibody-antigen interactions are much more complex and unpredictable than suggested by the old 'lock and key' analogy, and the goal of trying to prove that an antibody is specific is far more difficult than is generally appreciated. Here, we discuss the problems associated with the very complicated issue of trying to establish that an antibody (and the results obtained with it) is specific for the immunolabeling approaches used in light or electron microscopy. We discuss the increasing awareness that significant numbers of commercial antibodies are often not up to the quality required. We provide guidelines for choosing and testing antibodies in immuno-EM. Finally, we describe how quantitative EM methods can be used to identify reproducible patterns of antibody labeling and also extract specific labeling distributions.Peer reviewe

    Quantifying Golgi structure using EM : combining volume-SEM and stereology for higher throughput

    Get PDF
    John Lucocq was supported by a Programme grant from the Wellcome Trust (Number 045404). Sophie Ferguson was a recipient of a 600th anniversary studentship from the University of St Andrews.Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5–10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell–cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.Publisher PDFPeer reviewe

    Biogenesis, inheritance and 3D ultrastructure of the microsporidian mitosome

    Get PDF
    Funding: This work was supported by a European Research Council Advanced Investigator Grant (ERC-2010-AdG-268701) to T.M.E., and a Wellcome Trust Programme Grant (Number 045404) to T.M.E. and J.M.L.During the reductive evolution of obligate intracellular parasites called microsporidia, a tiny remnant mitochondrion (mitosome) lost its typical cristae, organellar genome, and most canonical functions. Here, we combine electron tomography, stereology, immunofluorescence microscopy, and bioinformatics to characterise mechanisms of growth, division, and inheritance of this minimal mitochondrion in two microsporidia species (grown within a mammalian RK13 culture-cell host). Mitosomes of Encephalitozoon cuniculi (2–12/cell) and Trachipleistophora hominis (14–18/nucleus) displayed incremental/non-phasic growth and division and were closely associated with an organelle identified as equivalent to the fungal microtubule-organising centre (microsporidian spindle pole body; mSPB). The mitosome–mSPB association was resistant to treatment with microtubule-depolymerising drugs nocodazole and albendazole. Dynamin inhibitors (dynasore and Mdivi-1) arrested mitosome division but not growth, whereas bioinformatics revealed putative dynamins Drp-1 and Vps-1, of which, Vps-1 rescued mitochondrial constriction in dynamin-deficient yeast (Schizosaccharomyces pombe). Thus, microsporidian mitosomes undergo incremental growth and dynamin-mediated division and are maintained through ordered inheritance, likely mediated via binding to the microsporidian centrosome (mSPB).Publisher PDFPeer reviewe

    Cutting a fine figure : On the use of thin sections in electron microscopy to quantify autophagy

    Get PDF
    Over the last few years, two guideline articles have been published with recommendations for assessing autophagy. These articles contained advice on quantification of autophagy by electron microscopy and proposed using thin slices for quantifying autophagic structures. Here, we expand on what can and cannot be quantified using single 2D slices and give some suggestions for efficient and minimally biased approaches for quantifying this fascinating and important process. We recommend that the journal Autophagy follow other journals in demanding stringent random sampling design and application of unbiased design-based quantification when reviewing submitted manuscripts.Publisher PDFPeer reviewe

    Efficient quantitative morphological phenotyping of genetically altered organisms using stereology

    No full text
    Genetically modified organisms present the challenge of quantifying structures and functions in organs, tissues and cells. Morphological investigation is greatly facilitated by taking sections in MRI, CAT scanning, histological preparations or EM, and powerful unbiased quantitative tools called stereology can use these sections in a sampling based approach to measure volume, number surface and length. Stereological tools have become methods of choice in the fields of neurobiology, nephrology and cell biology and allow accurate unbiased description of intact organs, tissues, cells and organelles. Stereology has yet to be applied widely in the field of transgenics. Here I provide an overview of stereological methods and explain how they represent a powerful addition to the transgenic biologists armoury of techniques.</p

    Efficient quantitative morphological phenotyping of genetically altered organisms using stereology

    No full text
    Genetically modified organisms present the challenge of quantifying structures and functions in organs, tissues and cells. Morphological investigation is greatly facilitated by taking sections in MRI, CAT scanning, histological preparations or EM, and powerful unbiased quantitative tools called stereology can use these sections in a sampling based approach to measure volume, number surface and length. Stereological tools have become methods of choice in the fields of neurobiology, nephrology and cell biology and allow accurate unbiased description of intact organs, tissues, cells and organelles. Stereology has yet to be applied widely in the field of transgenics. Here I provide an overview of stereological methods and explain how they represent a powerful addition to the transgenic biologists armoury of techniques.</p

    Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth

    Get PDF
    We gratefully acknowledge financial support from the Wellcome Trust (Grant No. WT089803MA to J.M.L.) and the School of Medicine, University of St Andrews.Neurite growth is central to the formation and differentiation of functional neurons and recently, an essential role for phospholipase C-η2 (PLCη2) in neuritogenesis was revealed. Here we investigate the function of PLCη2 in neuritogenesis using Neuro2A cells, which upon stimulation with retinoic acid differentiate and form neurites. We first investigated the role of the PLCη2 calcium-binding EF-hand domain, a domain that is known to be required for calcium-dependent PLCη2 activation. To do this we quantified neurite outgrowth in Neuro2A cells, stably overexpressing wild-type PLCη2 and D256A (EF-hand) and H460Q (active site) PLCη2 mutants. Retinoic acid-induced neuritogenesis was highly dependent on PLCη2 activity, with the H460Q mutant exhibiting a strong dominant-negative effect. Expression of the D256A mutant had little effect on neurite growth relative to the control, suggesting that calcium-directed activation of PLCη2 is not essential to this process. We next investigated which cellular compartments contain endogenous PLCη2 by comparing immuno-electron microscopy signals over control and knockdown cell lines. When signals were analyzed to reveal specific labelling for PLCη2, it was found to be localized predominantly over the nucleus and cytosol. Furthermore in these compartments (and also in growing neurites), a proximity ligand assay revealed that PLCη2 specifically interacts with LIMK-1 in Neuro2A cells. Taken together, these data emphasize the importance of PLCη2 and its articulation with LIMK-1 in regulating neuritogenesis.Publisher PDFPeer reviewe

    A Stereological Approach for Estimation of Cellular Immunogold Labeling and Its Spatial Distribution in Oriented Sections Using the Rotator

    No full text
    Particulate gold labeling applied to ultrathin sections is a powerful approach for locating cellular proteins and lipids on thin sections of cellular structures and compartments. Effective quantitative methods now allow estimation of both density and distribution of gold labeling across aggregate organelles or compartment profiles. However, current methods generally use random sections of cells and tissues, and these do not readily present the information needed for spatial mapping of cellular quantities of gold label. Yet spatial mapping of gold particle labeling becomes important when cells are polarized or show internal organization or spatial shifts in protein/lipid localization. Here we have applied a stereological approach called the rotator to estimate cellular gold label and proportions of labeling over cellular compartments at specific locations related to a chosen cell axis or chosen cellular structures. This method could be used in cell biology for mapping cell components in studies of protein translocation, cell polarity, cell cycle stages, or component cell types in tissues. (J Histochem Cytochem 57:709–719, 2009

    Okadaic acid treatment leads to a fragmentation of the trans-Golgi network and an increase in expression of TGN38 at the cell surface

    No full text
    Okadaic acid (OA) is a protein phosphatase inhibitor which has, among other properties, previously been shown to induce a fragmentation of the cisternae of the Golgi stack [for review, see Lucocq (1992) J. Cell Sci. 103, 875-880]. The effects of OA an reversible and mimic intracellular events which occur during mitosis. To date, due to a lack of endogenous marker proteins, the effects of OA on the trans-Golgi network (TGN) has not been studied. Certain drugs, e.g. Brefeldin A (BFA), have different effects on the morphology of the Golgi stack and the TGN; it is therefore relevant to ask what effect(s) OA has on the TGN. We now present data from a study in which we have used antibodies to TGN38, an integral membrane protein predominantly localized to the TGN of rat NRK cells [Luzio, Brake, Banting, Howell, Braghetta and Stanley (1990) Biochem. J. 270, 97-102], to investigate the effects of OA on this organelle. OA induces a reversible fragmentation of the TGN. This fragmentation occurs with similar kinetics to that observed within the Golgi stack, and is independent of protein synthesis. The sensitivity of the TGN to OA is similar to that of the Golgi stack. The fragmentation of the TGN induced by OA also leads to a 10-fold increase in the level of TGN38 expressed at the plasma membrane

    Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB.

    No full text
    We have identified a novel mitogen- and stress-activated protein kinase (MSK1) that contains two protein kinase domains in a single polypeptide. MSK1 is activated in vitro by MAPK2/ERK2 or SAPK2/p38. Endogenous MSK1 is activated in 293 cells by either growth factor/phorbol ester stimulation, or by exposure to UV radiation, and oxidative and chemical stress. The activation of MSK1 by growth factors/phorbol esters is prevented by PD 98059, which suppresses activation of the MAPK cascade, while the activation of MSK1 by stress stimuli is prevented by SB 203580, a specific inhibitor of SAPK2/p38. In HeLa, PC12 and SK-N-MC cells, PD 98059 and SB 203580 are both required to suppress the activation of MSK1 by TNF, NGF and FGF, respectively, because these agonists activate both the MAPK/ERK and SAPK2/p38 cascades. MSK1 is localized in the nucleus of unstimulated or stimulated cells, and phosphorylates CREB at Ser133 with a Km value far lower than PKA, MAPKAP-K1(p90Rsk) and MAPKAP-K2. The effects of SB 203580, PD 98059 and Ro 318220 on agonist-induced activation of CREB and ATF1 in four cell-lines mirror the effects of these inhibitors on MSK1 activation, and exclude a role for MAPKAP-K1 and MAPKAP-K2/3 in this process. These findings, together with other observations, suggest that MSK1 may mediate the growth-factor and stress-induced activation of CREB
    corecore