34 research outputs found
Evolución paleoambiental de la Península Ibérica desde hace 1 Ma a partir de los biomarcadores del registro de la Turbera de Padul (Granada)
La Turbera de Padul, en la Provincia de Granada, ofrece unas posibilidades de estudio muy atractivas desde el punto de vista de la reconstrucción paleoambiental. Se trata de una fosa tectónica subsidente de naturaleza detrítica, a cuyo techo aparecen alternantes niveles de turba. El sondeo, de 107 metros, se realizó en un punto donde los estratos de turba aparecen a mayor profundidad, lo que permite obtener un registro geoquímico orgánico con mucho detalle con una antigüedad de hasta 1Ma. Se tomaron muestras cada 20 cm para el análisis de biomarcadores. Estos biomarcadores se obtuvieron mediante extracción Soxhlet, posterior separación de fracciones de diferente polaridad mediante Cromatografía en Columna, con Gel de Sílice y Alúmina, y posteriormente el análisis e identificación por Cromatografía de Gases - Espectrometría de masas, con confirmación de los compuestos químicos identificados por comparación con Bibliotecas de Espectros de Masas. La datación del sondeo se realizó utilizando distintos métodos como datación por 14C, U/Th, y datación por racemización de aminoácidos. Los resultados dataron el muro del sondeo con una antigüedad de 1 millón de años. El estudio de los biomarcadores ha permitido identificar episodios con distintas características en un escenario complejo, como es la Turbera de Padul, donde el aporte de agua por fusión nival complica la interpretación paleoambiental, y es la responsable de la existencia de la lámina de agua en la turbera en periodos secos con temperaturas elevadas. Se han identificado series de n-alcanos, de n-metilcetonas y series de nalcanoles, que han permitido identificar la aportación de materia orgánica de distintas fuentes al sedimento y por tanto la interpretación paleoambiental. La identificación de diterpenoides fenólicos (cis-Totatol, trans-Totarol y Ferruginol) han permitido identificar episodios de clima templado y húmedo con proliferación de cupresáceas, y precipitaciones abundantes. Por otro lado, se han identificado triterpenoides como el Friedelan-3-ona (Friedelin) y el A-norfriedel-8en-10-ona, cuya relación como precursor (Friedelin) y producto (A-norfriedel-8en-10-ona) ha permitido identificar episodios con fluctuaciones del espesor de la lámina de agua y aporte de material vegetal. ABSTRACT The Bog of Padul, in the province of Granada, offers very attractive possibilities for the study of paleoenvironmental reconstruction. It is a subsiding graben of detrital nature, whose upper part appear alternating peat levels. The core of 107 meters, obtained from a borehole drilled in a place where the layers of peat appear deeper, allowing to obtain organic geochemist information along the last 1 million years. Every 20 cm samples for biomarkers analysis were taken. These biomarkers were obtained by Soxhlet extraction, subsequent separation of fractions of different polarity by column chromatography with silica gel and alumina, and then analyzed and identified by gas chromatography - mass spectrometry, with confirmation of the chemicals identified by comparison to mass spectral libraries. The dating of the core was conducted using different methods such as 14C dating, U/Th, and amino acid racemization dating. The results dated the base of the core to be 1 million years old. The study has identified biomarkers episodes with different characteristics in a complex scenario, such as the Bog of Padul, where the contribution of snowmelt water complicates the paleoenvironmental interpretation, and is responsible for the existence of a sheet of water in dry periods with high temperatures. There have been identified series of n-alkanes, n-methyl ketones and series of n-alkanols that have shown the contribution of different organic matter sources to the sediment and therefore allowed to paleo interpretation. The identification of phenolic diterpenoids (cis-Totatol, trans-Totarol and Ferruginol) have identified episodes of mild and humid climate with proliferation of Cupressaceae, and abundant rainfall. In addition, triterpenoids have been identified, as the friedelan-3-one (friedelin) and the A-norfriedel-8en-10-one, whose relationship as precursor (friedelin) and product (A-norfriedel-8en-10-one) has identified episodes with fluctuations on the thickness of the sheet of water and supply of plant material debris
Estimating model error covariances using particle filters
State-space models are the framework in data assimilation to mathematically describe the hidden state of a system by combining observations with constraints from a physical model. The formulation of these models usually involves statistical parameters that do not rely on physical constants and therefore must be estimated, since they play a central role in the performance of the data assimilation method. In particular, model error and observation error covariance matrices describe the second-order statistical properties of the system and observation stochastic equations, respectively. The model error covariance matrix Q is the least constrained statistical parameter since it depends on the model physics imperfections. Moreover, a misspecification of Q has a strong impact on the computation of the probability density functions involved in a particle filter algorithm, leading to an unreliable and inaccurate inference. In this work, we propose the combination of the Expectation-Maximization algorithm (EM) with an efficient particle filter to estimate the model error covariance matrix Q, using a batch of observations over a time window. The proposed method encompasses two stages: the expectation step, in which a particle filter is used with the present estimate of the model error covariance to find the probability density function that maximises the likelihood, followed by a maximization step in which this expectation is maximised as function of the model error covariance. The model evidence is written in terms of the sequential marginal likelihoods and therefore the likelihood maximization requires a particle filter and a particle smoother is not needed. Since the problem is highly nonlinear an analytical solution for this maximum is not available so that we use a fixed point iteration for the maximization step. We show that this methodology converges to the true model error covariance in stochastic twin experiments using a linear model and the Lorenz-96 system, but at different rates and with different accuracies depending on the system parameters. The extension to online estimation using the Expectation-Maximization algorithm is also discussed and evaluated.Fil: Lucini, María Magdalena. University of Reading; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; ArgentinaFil: van Leeuwen, Peter Jan. University of Reading; Reino UnidoFil: Cocucci, Tadeo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaEGU General Assembly 2019VienaAustriaEuropean Geosciences Unio
COVID-19 Immunity in the Cohort of IRCCS San Raffaele Hospital Employees after BNT162b2 Vaccination: A Retrospective Observational Study
INTRODUCTION: The COVID-19 pandemic represents the most severe health and socioeconomic crisis of our century. It began with the first reports in China, in the Wuhan region in December 2019, and quickly spread worldwide, causing a new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Among the population most at risk of infection and developing severe forms of the disease are the elderly and healthcare workers, who are more exposed to infected individuals. On December 11, 2020, the Food and Drug Administration approved the emergency use of the BNT162b2 vaccine, the first mRNA vaccine in history. Since then, the total number of vaccine doses administered has exceeded 12 billion. Italy was the first European country to be affected by the pandemic, recording the highest number of total COVID-19 cases (25,695,311) and, after the first 70 days, had the highest crude mortality rate (141.0 per 100,000). In this study, we analyze the rate of SARS-CoV-2 infection among healthcare workers at the San Raffaele Scientific Institute in Milan before and after receiving the BNT162b2 vaccine. STUDY DESIGN: Retrospective observational cohort study. METHODS: The study analyzed the immunization status of 858 employees of the San Raffaele Scientific Institute in Milan, including doctors, healthcare workers, and administrative staff. The analysis is based on previous studies on the same cohort and is integrated with extrapolation and additional analysis of data from the Preventive Medicine Service's Biobank dataset of the same hospital to estimate the infection rate, duration of the disease, and antibody levels recorded in the personnel before and after receiving the double BNT162b2 vaccination. RESULTS: The analysis confirms the positive impact achieved by the introduction of mRNA vaccination in reducing the SARSCoV- 2 infection rate and increasing antibody levels in healthcare workers. Although the BNT162b2 vaccination may not provide complete protection against SARS-CoV-2, it appears to be able to reduce the number of infections, particularly the more severe and symptomatic forms often detected in individuals with various risk factors and comorbidities, making them more vulnerable. Healthcare workers, who have extensive contact with patients and record the greatest decrease in the infection rates, represent the population that receives the most benefit from vaccination. CONCLUSIONS: The evidence suggests that vaccinations are essential in protecting high-risk groups, such as healthcare workers, from SARS-CoV-2 infection. Providing adequate vaccination coverage to healthcare workers limits the spread of infections and decreases the severity of disease manifestations, while also reducing their duration
Respuesta diferencial de la comunidad bacteriana del suelo a las modificaciones en las fracciones de carbono orgánico debidas al uso productivo
Ponencia presentada en el IV Jornada Nacional de Suelos de Ambientes Semiáridos, Córdoba, Argentina, 25 al 26 de septiembre del 2019.Fil: Vázquez, Carolina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Verdenelli, Romina Aylén. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Verdenelli, Romina Aylén. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Merlo, Carolina. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Merlo, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Lucini, Enrique Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Ayoub, Ibrahim. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Kowaljow, Esteban. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Kowaljow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Meriles, José Manuel. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Meriles, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.El objetivo del trabajo fue ponderar la influencia de las variables químicas y biológicas en la conformación de la estructura de la comunidad bacteriana en suelos pristinos y productivos en una región semiárida de Córdoba. Se trabajó en el Chaco árido de Córdoba en la Reserva Forestal Chancaní (R-Chancaní) y en tres sitios productivos: desmonte total y selectivo para ganadería (DT-ganadería y DS-ganadería, respectivamente) y desmonte total para agricultura bajo riego (DT-agricultura). En cada sitio se tomaron 3 muestras compuestas de suelo (0-20 cm) y residuos superficiales (0,16 m2). En las muestras de suelo se determinó: a) emisión de CO2 b) materia orgánica total (MOT), c) sustancias húmicas (SH), d) ácidos fúlvicos y húmicos (AF y AH), e) carbono disuelto en agua fría y extraíble en agua caliente (CF y CC) y f) estructura de la comunidad bacteriana (TRFLP). En las muestras de residuos se determinó la biomasa total por hectárea. La biomasa total, la MOT y sus componentes recalcitrantes (SH, AF y AH) fueron significativamente superiores en R-Chancaní. El CF no varió, pero sí lo hizo el CC encontrándose los mayores valores en R-Chancaní y DT-agricultura. Al asociar la estructura de la comunidad bacteriana con las variables químicas, el análisis de correlaciones canónicas agrupó claramente a los sitios productivos y los separó del sitio R-Chancaní. El eje 1 (79,3%) asoció la estructura de la comunidad bacteriana del sitio R-Chancaní con la biomasa total (0,85) y el contenido de SH (0,71). El eje 2 (10,5 %) separó los sitios productivos en dos grupos, un grupo conformado por los sitios con ganadería y otro conformado por el sitio DT-agricultura. En conclusión, el uso del suelo modificó la estructura de las comunidades bacterianas, fundamentalmente por la modificación en la biomasa total y en el contenido del componente recalcitrante de la MOT.Fil: Vázquez, Carolina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Verdenelli, Romina Aylén. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Verdenelli, Romina Aylén. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Merlo, Carolina. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Merlo, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Lucini, Enrique Iván. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Ayoub, Ibrahim. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Cátedra de Microbiología Agrícola; Argentina.Fil: Kowaljow, Esteban. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Kowaljow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Meriles, José Manuel. Universidad Nacional de Córdoba. Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina.Fil: Meriles, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV); Argentina
Deliverable D2:Consolidation of needs of the european wasten management agencies and the regulator of the consortium: Work Package 1, Site-specific and palaeo environmental data. Modelling sequential biosphere systems under climate change for radioactive waste disposal. (BIOCLIM)
The nature of long-lived radioactive wastes is that
they present a radiological hazard over a period
of time that is extremely long compared with the
timescale over which the engineered protection
systems and institutional management of a disposal, or
long-term storage, facility can be guaranteed. Safety
assessments for potential deep repositories need
to be able to provide indicators of safety performance
over time periods of hundreds of thousands of years.
On such timescales, it is generally assumed that
radionuclides may be slowly released from the
containment system, migrating via geosphere pathways
until they reach the accessible environment. Hence,
there is a need to study the evolution of the
environment external to the disposal system and the
ways in which this might impact on its long-term
radiological safety performance, for example in terms
of influences on the migration and accumulation of
radionuclides
Deliverable D3: Global climatic features over the next million years and recommendation for specific situations to be considered. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)
The BIOCLIM project aims at assessing the
possible long-term impacts of climate change
on the safety of waste repositories in deep
formations using climate simulations of the long-term
climate in various European areas. One of the
objectives of the project is to develop two strategies for
representing sequential climatic changes to the
geosphere-biosphere system for different sites over
Europe, addressing the time scale of one million years.
The results of this work will be interpreted in terms of
global or regional changes of climate and of vegetation.
The first strategy (hierarchical strategy) will use the full
hierarchy of existing climate models (a climate model is
a numerical simplified representation of the climate
system behaviour and evolution). Simple models (LLN
2-D NH and threshold models; see the description here
after) will simulate the overall long-term evolution of the
global climate. Their results will then be used as inputs
to more complex models (LMD climate models possibly
coupled with vegetation models, either SECHIBA or
ORCHIDE) and finally climate and vegetation cover will
be determined for specific sites at specific times. A
second strategy (integrated strategy) will consist in
building an integrated climate model, which represents
most of the physical mechanisms for studying long-term
climatic variations. The results will then be interpreted
on a regional scale. This deliverable is the first step of
the hierarchical strategy. The purpose of this deliverable
is to identify and justify some specific climatic
situations amongst different long-term simulations that
are of interest for assessing the safety of radioactive
waste repository sites and that will be further studied
with GCMs (General Circulation Model)
Deliverable D4/5: Global climatic characteristics, including vegetation and seasonal cycles over Europe, for snapshots over the next 200,000 years. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)
The aim of the BIOCLIM project is to develop and
present techniques that can be used to develop
self-consistent patterns of possible future
climate changes over the next million years (climate
scenarios), and to demonstrate how these climate
scenarios can be used in assessments of the long-term
safety of nuclear waste repository sites.
Within the project, two strategies are implemented to
predict climate change. The first is the hierarchical
strategy, in which a hierarchy of climate models is used
to investigate the evolution of climate over the period of
interest. These models vary from very simple 2-D and
threshold models, which simulate interactions between
only a few aspects of the earth system, through general
circulation models (GCMs) and vegetation models,
which simulate in great detail the dynamics and physics
of the atmosphere, ocean, and biosphere, to regional
models, which focus in particular on the European
region and the specific areas of interest. The second
strategy is the integrated strategy, in which
intermediate complexity climate models are developed,
and used to consecutively simulate the development of
the earth system over many millennia. Although these
models are relatively simple compared to a GCM, they
are more advanced than 2D models, and do include
physical descriptions of the biosphere, cryosphere,
atmosphere and ocean.
This deliverable, D4/5, focuses on the hierarchical
strategy, and in particular the GCM and vegetation
model simulation of possible future climates.
Deliverable D3 documented the first step in this
strategy. The Louvain-la-Neuve 2-D climate model
(LLN-2D) was used to estimate (among other variables)
annual mean temperatures and ice volume in the
Northern Hemisphere over the next 1 million years.
It was driven by the calculated evolution of orbital
parameters, and plausible scenarios of CO2
concentration. From the results, 3 future time periods
within the next 200,000 years were identified as being
extreme, that is either significantly warmer or cooler
than the present. The next stage in the hierarchical
strategy was to use a GCM and biosphere model, to
simulate in more detail these extreme time periods
Deliverable D8a: Development of the rule-based downscaling methodology for BIOCLIM Workpackage 3. Work Package 3, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)
One of the tasks of BIOCLIM WP3 was to develop
a rule-based approach for downscaling from the
MoBidiC model of intermediate complexity (see
Ref.1) in order to provide consistent estimates of
monthly temperature and precipitation for the specific
regions of interest to BIOCLIM (Central Spain, Central
England and Northeast France, together with Germany
and the Czech Republic). Such an approach has been
developed and used in a previous study funded by Nirex
to downscale output from an earlier version of this
climate model covering the Northern Hemisphere only,
LLN 2-D NH, to Central England, and evaluated using
palaeoclimate proxy data and General Circulation
Model (GCM) output for this region. This previous study
[Ref.2] provides the starting point for the BIOCLIM
work.
A statistical downscaling methodology has been
developed by Philippe Marbaix of CEA/LSCE for use
with the second climate model of intermediate
complexity used in BIOCLIM – CLIMBER-GREMLINS
(see Ref.1). This statistical methodology is described
in Deliverable D8b [Ref.3]. Inter-comparisons of all the
downscaling methodologies used in BIOCLIM (including
the dynamical methods applied in WP2 – see Ref.4 and
Ref.5) are discussed in Deliverable D10-12 [Ref.6].
The rule-based methodology assigns climate states or
classes to a point on the time continuum of a region
according to a combination of simple threshold
values which can be determined from the coarse
scale climate model. Once climate states or classes
have been defined, monthly temperature and
precipitation climatologies are constructed using
analogue stations identified from a data base of
present-day climate observations. The most appropriate
climate classification for BIOCLIM purposes is the
Køppen/Trewartha scheme (Ref.7 ; see Appendix 1).
This scheme has the advantage of being empirical, but
only requires monthly averages of temperature and
precipitation as input variables
Deliverable D6a: Regional climatic characteristics for the European sites at specific times: the dynamical downscaling. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)
The overall aim of BIOCLIM is to assess the
possible long-term impacts due to climate
change on the safety of radioactive waste
repositories in deep formations. This aim is addressed
through the following specific objectives:
• Development of practical and innovative strategies for
representing sequential climatic changes to the
geosphere-biosphere system for existing sites over
central Europe, addressing the timescale of one
million years, which is relevant to the geological
disposal of radioactive waste.
• Exploration and evaluation of the potential effects of
climate change on the nature of the biosphere
systems used to assess the environmental impact.
• Dissemination of information on the new
methodologies and the results obtained from the
project among the international waste management
community for use in performance assessments of
potential or planned radioactive waste repositories.
The BIOCLIM project is designed to advance the
state-of-the-art of biosphere modelling for use in
Performance Assessments. Therefore, two strategies
are developed for representing sequential climatic
changes to geosphere-biosphere systems. The
hierarchical strategy successively uses a hierarchy of
climate models. These models vary from simple 2-D
models, which simulate interactions between a few
aspects of the Earth system at a rough surface
resolution, through General Circulation Model (GCM)
and vegetation model, which simulate in great detail the
dynamics and physics of the atmosphere, ocean and
biosphere, to regional models, which focus on the
European regions and sites of interest. Moreover,
rule-based and statistical downscaling procedures are
also considered. Comparisons are provided in terms of
climate and vegetation cover at the selected times and
for the study regions. The integrated strategy consists
of using integrated climate models, representing all
the physical mechanisms important for long-term
continuous climate variations, to simulate the climate
evolution over many millennia. These results are then
interpreted in terms of regional climatic changes using
rule-based and statistical downscaling approaches.
This deliverable, D6a, focuses on the hierarchical
strategy, and in particular the MAR simulations.
According to the hierarchical strategy developed in
the BIOCLIM project to predict future climate, six
BIOCLIM experiments were run with the MAR model. In
addition to these experiments a baseline experiment,
presenting the present-day climate simulated by MAR,
was also undertaken. In the first step of the hierarchical
strategy the LLN 2-D NH climate model simulated
the gross features of the climate of the next 1 Myr
[Ref.1]. Six snapshot experiments were selected from
these results. In a second step a GCM and a biosphere
model were used to simulate in more detail the climate
of the selected time periods. These simulations were
performed on a global scale [Ref.1]. The third step of
the procedure is to derive the regional features of the
climate at the same time periods. Therefore the results
of the GCM are used as boundary conditions to force
the regional climate model (MAR) for the six selected
periods and the baseline simulation. The control
simulation (baseline) corresponds to the regional
climate simulated under present-day conditions, both
insolation forcing and atmospheric CO2 concentration.
All the BIOCLIM simulations are compared to that
baseline simulation. In addition, other comparisons will
also be presented. Tableau 1 summarises the
characteristics of these BIOCLIM experiments already
presented in [Ref.1] and [Ref.2]