3 research outputs found
Ecology of Aedes Mosquitoes, the Major Vectors of Arboviruses in Human Population
Aedes aegypti (Stegomyia) has been human vectors for many human diseases globally. In recent years, dengue virus has been diagnosed in different regions such as Asia and Latin America vectored by Aedes spp. mosquitoes. Dengue cases have been reported again in the several parts of African and other continental hospital. The different types of breeding sites have been found to be abundant in both urban and rural areas. The abundance of adult Ae. aegypti and habitat productivity in different settings escalates the risk of dengue transmission if viruses are found in asymptomatic population. The insecticide resistance has been found to occur in the wild population of Aedes aegypti to insecticides commonly used for indoor residual spray and long-lasting insecticidal net treatments. The control of human vector population is still a challenge as the vector has a diurnal feeding and outdoor resting behavior. Environmental management is still the best practice to be adopted in many countries for Aedes aegypti control. The currently discovered dengue vaccine might be an immediate arsenal for the community immunization
Bio-efficacy of DuraNet® long-lasting insecticidal nets against wild populations of Anopheles arabiensis in experimental huts
Abstract Background Mosquitoes have developed resistance to multiple classes of insecticides for malaria vector control. A new generation of long-lasting insecticidal bed nets (LLINs) has been developed with increased efficacy against these resistant mosquitoes. The present study therefore evaluated the efficacy of the pyrethroid-based LLINs, DuraNet versus PermaNet 3.0, in an Eastern Africa hut design in Magugu in northern Tanzania where mosquitoes’ population higher proportion (69.3%) has been identified as Anopheles gambiae s.l. Methods Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area with high populations of Anopheles arabiensis. All nets used were subjected to laboratory cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition, and personal protection rate were compared between untreated nets, unwashed LN, and LN that were washed 20 times. Results Standard WHO laboratory bioefficacy evaluations of DuraNet and PermaNet® 3.0 which were untreated, washed, or 20 times washed showed optimal knockdown and mortality for both net types against a susceptible strain of An. arabiensis. In standard experimental hut evaluations, the blood feeding inhibition for PermaNet® 3.0 unwashed and washed was 82.4% (76.3–88.6%) to 91.5% (84.1–98.8%) while for DuraNet was 98.3% (97.0–99.5%) to 96.0% (94.1–88.2%) respectively. The DuraNet LLINs showed a significantly higher killing effect than the other treatment of 90.0% (86.1–94.2%) and 94.0% (90.2–97.9%) for unwashed and washed nets respectively. No significant difference in deterrence or induced exophily was detected between the treatment arms. There were no adverse effects reported among sleepers in the experimental huts. Conclusion The findings of this study indicate that the pyrethroid-based net DuraNet LLINs attained required efficacy when evaluated against wild population of An. arabiensis from Northern Tanzania. This adds value to the existing vector control tool box which gives community wider choice for vector control