179 research outputs found

    Matrix-assisted pulsed laser thin film deposition by using Nd: YAG laser

    Get PDF
    Matrix-Assisted Pulsed Laser Evaporation (MAPLE) is a deposition technique, developed from Pulsed Laser Deposition (PLD) especially well suited for producing organic/polymeric thin films, which can take advantage from using Nd:YAG laser. Depending on the relative values of light absorption coefficients of the solvent and of the molecules to be deposited, laser energy is directly absorbed by the solvent or is transferred to it, providing a softer desorption mechanism with respect to PLD. In PLD ultraviolet laser radiation is commonly used, but in MAPLE, since easily damaged molecules are usually involved, the use of Nd:YAG laser offers the advantage to allow selecting laser wavelength from ultraviolet (266 nm or 355 nm, corresponding to 4.66 eV or 3.49 eV photon energies, resp.) to visible (532 nm, 2.33 eV) to infrared (1064 nm, 1.17 eV). In this paper, the MAPLE technique is described in details, together with a survey of current and possible future applications for both organic and biomaterial deposition taking into account the advantages of using an Nd:YAG laser. Beside other results, we have experimental confirmation that MAPLE applications are not limited to transparent molecules highly soluble in light absorbing solvent, thus allowing deposition of poorly soluble light absorbing molecules suspended in a light transparent liquid

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    Dynamics of optical nonlinearity in water in oil microemulsions

    No full text

    Anchoring induced by porous substrate on a liquid crystal layer

    No full text

    Photovoltaic fields: influence of the array structure on power loss due to cell failures

    No full text

    Dielectric receivers for asymmetrical ideal concentrators

    No full text

    I gradi giorno in Italia

    No full text

    Temperature dependence of light transmittance in Polymer Dispersed Liquid Crystals

    No full text

    Ideal concentrators with polygonal absorbers.

    No full text
    • …
    corecore