2 research outputs found

    Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction

    No full text
    Singly and multiply doped graphene oxide quantum dots have been synthesized by a simple electrochemical method using water as solvent. The obtained materials have been characterized by photoemission spectroscopy and scanning tunneling microscopy, in order to get a detailed picture of their chemical and structural properties. The electrochemical activity toward the oxygen reduction reaction of the doped graphene oxide quantum dots has been investigated by cyclic voltammetry and rotating disk electrode measurements, showing a clear decrease of the overpotential as a function of the dopant according to the sequence: N āˆ¼ B > B,N. Moreover, assisted by density functional calculations of the Gibbs free energy associated with every electron transfer, we demonstrate that the selectivity of the reaction is controlled by the oxidation states of the dopants: as-prepared graphene oxide quantum dots follow a two-electron reduction path that leads to the formation of hydrogen peroxide, whereas after the reduction with NaBH<sub>4,</sub> the same materials favor a four-electron reduction of oxygen to water

    Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    No full text
    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4ā€³-dibromo-<i>para</i>-terphenyl as the molecular precursor on Au(111) to form extended poly-<i>para</i>-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbonā€™s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbateā€™s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate
    corecore