203 research outputs found

    Spatio-temporal entanglement of twin photons: an intuitive picture

    Full text link
    We draw an intuitive picture of the spatio-temporal properties of the entangled state of twin photons, where they are described as classical wave-packets. This picture predicts a precise relation between their temporal and transverse spatial separations at the crystal output. The space-time coupling described by classical arguments turns out to determine in a precise way the spatio-temporal structure of the quantum entanglement, analysed by means of the biphotonic correlation and of the Schmidt dimensionality of the entanglement.Comment: 12 pages, 3 figure

    Fragile Heterosexuality: A Cross-cultural Study Between Germany and Italy

    Get PDF
    Prior research in the UK and the USA found that heterosexual identity was perceived as more easily compromised than gay identity: a finding dubbed the “Fragile Heterosexuality” effect. However, there is as yet no evidence that this effect occurs outside the USA and UK. With representative samples from Germany (N = 1236) and Italy (N = 1249), we investigated the fragile heterosexuality effect using participants’ agreement with gender-neutral statements about the perceived fragility of sexual orientation of others. We found evidence supporting the fragile heterosexuality effect in both countries. We also investigated six possible moderators of the effect. Higher estimates of gay/lesbian population weakened the effect, and higher levels of anti-gay prejudice strengthened the effect. Contact (quantity/quality), right wing authoritarianism, and social dominance orientation did not moderate the effect. These findings contribute to previous literature by highlight that the fragile heterosexuality effect appears across countries of diverse LGBTQ friendliness and languages, and also suggest plausible explanations for the effect

    Effect of auxotrophies on yeast performance in aerated fed-batch reactor

    Get PDF
    A systematic investigation on the effects of auxotrophies on the performance of yeast in aerated fed-batch reactor was carried out. Six isogenic strains from the CEN.PK family of Saccharomyces cerevisiae,one prototroph and five auxotrophs, were grown in aerated fed-batch reactor using the same operative conditions and a proper nutritional supplementation. The performance of the strains, in terms of final biomass decreased with increasing the number of auxotrophies. Auxotrophy for leucine exerted a profound negative effect on the performance of the strains. Accumulation of reactive oxygen species (ROS) in the cells of the strain carrying four auxotrophies and its significant viability loss, were indicative of an oxidative stress response induced by exposure of cells to the environmental conditions. The mathematical model was fundamental to highlight how the carbon flux, depending on the number and type of auxotrophies, was diverted towards the production of increasingly large quantities of energy for maintenance

    Effect of auxotrophies on yeast growth in aerated fed-batch reactor

    Get PDF
    Mutant and deletion strains of the yeast Saccharomyces cerevisiae having one/several auxotrophies are largely used in the development of recombinant strains for heterologous protein production because they ensure maintenance of plasmids with selectable markers. The production is usually carried out by culturing the recombinant strain in aerated fed-batch, where sugar limitation achieves high yields of biomass and product. In a previous work, it was evidenced that growth of the auxotrophic S. cerevisiae BY4741 (MATa, ura30, leu20, met150, his31) engineered for human IL-1 production, and employed in aerated fed-batch, early arrested even in the presence of a correct nutritional complementation (being specific nutrients for genetically uncomplemented auxotrophies provided in no growthlimiting amounts). It was assumed that this behaviour may depend on the high number of auxotrophies, since the prototrophic S288C, from which BY4741 derives, showed a typical performance under the same cultivation mode. Therefore, a systematic investigation on the effect of auxotrophies on yeast growth in aerated fed-batch was carried out. Four isogenic strains of the CEN.PK family, with a progressively increasing number of auxotrophies (from one to four) were assayed under fed-batch conditions and a proper nutritional complementation. Feeding to the reactor was exponentially increased imposing a specific growth rate below the critical one. The behaviour of the auxotrophic strains was compared with that of the isogenic prototrophic strain. by evaluating the capacity to keep the specific growth rate chosen. A clear correlation among optimum growth and number of auxotrophies has been found. Furthermore we have investigated the possible effect of the type of auxotrophy (ura- or leu-) on the strain performance, monitoring as well cell viability of each strain. The study is a contribution to know the phenotypic effects of auxotrophies in yeast and can have implications for biotechnological applications

    Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision

    Get PDF
    In this retrospective compendium, we attempt to draw a “fil rouge” along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4–120 μm), the different types of suitable semiconductor lasers (Fabry–Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research

    Versatile Multimodality Imaging System Based on Detectorless and Scanless Optical Feedback Interferometry-A Retrospective Overview for A Prospective Vision

    Get PDF
    In this retrospective compendium, we attempt to draw a "fil rouge" along fifteen years of our research in the field of optical feedback interferometry aimed at guiding the readers to the verge of new developments in the field. The general reader will be moved at appreciating the versatility and the still largely uncovered potential of the optical feedback interferometry, for both sensing and imaging applications. By discovering the broad range of available wavelengths (0.4-120 μm), the different types of suitable semiconductor lasers (Fabry-Perot, distributed feedback, vertical-cavity, quantum-cascade), and a number of unconventional tenders in multi-axis displacement, ablation front progression, self-referenced measurements, multispectral, structured light feedback imaging and compressive sensing, the specialist also could find inspirational suggestions to expand his field of research

    All-fiber fourth and fifth harmonic generation from a single source

    Get PDF
    All-fiber fourth and fifth harmonic generation from a single source is demonstrated experimentally and analyzed theoretically. Light from a fully fiberized high power master oscillator power amplifier is launched into a periodically poled silica fiber generating the second harmonic. The output is then sent through two optical microfibers that generate the third and fourth harmonic, respectively, via four wave mixing (FWM). For a large range of pump wavelengths in the silica optical transmission window, phase matched FWM can be achieved in the microfibers at two different diameters with relatively wide fabrication tolerances of up to ±5 nm. Our simulations indicate that by optimizing the second harmonic generation efficiency and the diameters and lengths of the two microfibers, conversion efficiencies to the fourth harmonic in excess of 25% are theoretically achievable

    Four-wave mixing UV generation in optical microfibers

    No full text
    UV generation via four-wave-mixing (FWM) in optical microfibres (OMFs) was demonstrated. This was achieved by exploiting the tailorable dispersion of the OMF in order to phase match the propagation constant of the four frequencies involved in the FWM process. In order to satisfy the frequency requirement for FWM, a Master Oscillator Power Amplifier (MOPA) working at the telecom C-band was connected to a periodically poled silica fibre (PPSF), producing a fundamental frequency (FF) at 1550.3nm and a second harmonic (SH) frequency at 775.2nm. A by-product of this second harmonic generation is the generation of a signal at the third harmonic (TH) frequency of 516.7nm via degenerate FWM. This then allows the generation of the fourth harmonic (FH) at 387.6nm and the fifth harmonic (5H) at 310nm via degenerate and nondegenerate FWM in the OMF.The output of the PPSF was connected to a pure silica core fibre which was being tapered using the modified flame brushing technique from an initial diameter of 125µm to 0.5µm. While no signal at any UV wavelength was initially observed, as the OMF diameter reached the correct phase matching diameters, signals at 387.6nm appeared. Signals at 310nm also appeared although it is not phase matched, as the small difference in the propagation constant is bridged by other nonlinear processes such as self-phase and cross phase modulation

    Stone/Coating Interaction and Durability of Si-Based Photocatalytic Nanocomposites Applied to Porous Lithotypes

    Get PDF
    The use of hybrid nanocoatings for the protection of natural stones has received increasing attention over the last years. However, the interaction of these materials with stones and, in particular, its modification resulting from the blending of nanoparticles and matrices, are yet little explored. In this work, the interaction of two nanocomposite coatings (based on alkylalkoxysilane matrices and TiO2 nanoparticles in water and 2-propanol) with two different porous stones is examined in detail by comparing their absorption behaviour and protection performance with those of the respective TiO2-free matrices. It is shown that the protective effectiveness of both matrices is not negatively affected by the presence of TiO2, as the desired water barrier effect is retained, while a significant photocatalytic activity is achieved. The addition of titania leads to a partial aggregation of the water-based matrix and accordingly reduces the product penetration into stones. On the positive side, a chemical interaction between titania and this matrix is observed, probably resulting in a greater stability of nanoparticles inside the protective coating. Moreover, although an effect of TiO2 on the chemical stability of matrices is observed upon UV light exposure, the protective performance of coatings is substantially maintained after ageing, while the interaction between matrices and nanoparticles results in a good retention of the latter upon in-lab simulated rain wash-out

    UV light generation in optical fibres

    No full text
    UV light has been generated in optical fibers using nonlinear optics (harmonic generation) and rare earth doping with Gd3+
    corecore