8 research outputs found

    Mechanical Properties and Corrosion Behaviour of 316l Stainless Steel Honeycomb Cellular Cores Manufactured by Selective Laser Melting

    Get PDF
    Selective laser technology is an additive technology that can allow for the manufacture of cellular structures using different types of metallic powder with complex applications in industries such as aerospace, automotive and medical implant industries. This paper presents the effect of climate and mechanical stresses on some honeycomb cellular cores, used in sandwich structures made of 316L stainless steel powder by applying the selective laser melting technology. The honeycomb cellular cores have undergone the microhardness testing and the resulting variation obtained from the analyzed samples was 225 ± 15 (HV_{0.3}). The compressive strength and the modulus of elasticity of the cellular structures were determined for flatwise and edgewise compressive stresses. Also, the cellular structures were subjected to accelerated corrosion tests in order to determine their mean life in application use conditions similar to those near seas and oceans. Also, a microstructural evaluation of salt deposits was carried out on the cellular structures subjected to accelerated corrosion tests using a salt spray test chamber

    Microstructure and micro-hardness analyses of titanium alloy Ti-6Al-4V parts manufactured by selective laser melting

    No full text
    Selective Laser Melting (SLM) is one of the powder based additive manufacturing technologies and it is, as well, the most rapidly growing technique in Rapid Prototyping. In this paper is presented a microstructure analysis using Scanning Electron Microscope (LEO 1525 SEM), of Ti6Al4V parts exposed into a corrosion environment. The corrosion environment was generated using a salt chamber with 5% and 10% NaCl concentration and an ACS-Sunrise climatic chamber. The parts were also subjected to tests in order to determine their micro-hardness, followed by a statistical processing of the obtained data. The parts, having a lattice structure, were built on a Selective Laser Melting machine

    Compressive behaviour of lattice structures manufactured by polyjet technologies

    No full text
    Additive manufacturing (AM) techniques can help to reduce the time and cost for manufacturing complex shaped parts. The main goal of this research was to determine the best strength structure of six different types of lattice cells, manufactured using the Poly Jet AM technology. In order to perform the tests, six samples with the same structure were created for each lattice type. For testing the samples in compression, an electromechanical test machine was used. finite element analysis (FEA) analysis was used in order to determine the area where the greatest stresses occured and to estimate the maximal compressive strength. The strongest structure was determined by obtaining the maximal compressive strength. This was calculated in two ways: as a ratio between the maximal supported force and the mass of the sample (N/g) and as a ratio between the maximal supported force and the critical section of the sample (MPa)

    Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties

    No full text
    Fused Filament Fabrication (FFF) is one of the frequently used material extrusion (MEX) additive manufacturing processes due to its ability to manufacture functional components with complex geometry, but their properties depend on the process parameters. This paper focuses on studying the effects of process parameters, namely infill density (25%, 50%, 75%, and 100%), on the mechanical and thermal response of the samples made of poly(lactic acid) (PLA) reinforced with short glass fibers (GF) produced using FFF process. To perform a comprehensive analysis, tensile, flexural, compression, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) tests were used. The paper also aims to manufacture by FFF process of composite structures of the fuselage section type, as structural elements of an unmanned aerial vehicle (UAV), and their testing to compression loads. The results showed that the tensile, flexural and compression strength of the additive manufactured (AMed) samples increased with the increase of infill density and therefore, the samples with 100% infill density provides the highest mechanical characteristics. The AMed samples with 50% and 75% infill density exhibited a higher toughness than samples with 100% infill. DSC analyses revealed that the glass transition (Tg), and melting (Tm) temperature increases slightly as the infill density increases. Thermogravimetric analyses (TGA) show that PLA-GF filament loses its thermal stability at a temperature of about 311 °C and the increase in fill density leads to a slight increase in thermal stability and the complete degradation temperature of the AMed material. The compression tests of the fuselage sections manufactured by FFF made of PLA-GF composite showed that their stiffening with stringers oriented at an angle of ±45° ensures a higher compression strength than the stiffening with longitudinal stringers

    Fabrication and Characterization of Fiber-Reinforced Composite Sandwich Structures Obtained by Fused Filament Fabrication Process

    No full text
    The application of fused filament fabrication processes is rapidly expanding in many domains such as aerospace, automotive, medical, and energy, mainly due to the flexibility of manufacturing structures with complex geometries in a short time. To improve the mechanical properties of lightweight sandwich structures, the polymer matrix can be strengthened with different materials, such as carbon fibers and glass fibers. In this study, fiber-reinforced composite sandwich structures were fabricated by FFF process and their mechanical properties were characterized. In order to conduct the mechanical tests for three-point bending, tensile strength, and impact behavior, two types of skins were produced from chopped carbon-fiber-reinforced skin using a core reinforced with chopped glass fiber at three infill densities of 100%, 60%, and 20%. Using microscopic analysis, the behavior of the breaking surfaces and the most common defects on fiber-reinforced composite sandwich structures were analyzed. The results of the mechanical tests indicated a significant influence of the filling density in the case of the three-point bending and impact tests. In contrast, the filling density does not decisively influence the structural performance of tensile tests of the fiber-reinforced composite sandwich structures. Composite sandwich structures, manufactured by fused filament fabrication process, were analyzed in terms of strength-to-mass ratio. Finite element analysis of the composite sandwich structures was performed to analyze the bending and tensile behavior

    Design and Testing of Brushless DC Motor Components of A6 Steel Additively Manufactured by Selective Laser Sintering

    No full text
    Metallic additive manufacturing technology is seeing increasing use from aviation companies manufacturing prototypes or components with complex geometric shapes, which are then tested and put into operation. This paper presents the design, fabrication via a selective laser sintering process, and testing of the mechanical performance by performing three-point bending and tensile tests on A6 steel specimens. After performing the mechanical tests on specimens made from A6 steel manufactured via the SLS process, the following performances were obtained: the maximum three-point bending strength was 983.6 MPa and the maximum tensile strength was 398.6 MPa. In the microscopic analysis of the specimens manufactured by the selective laser sintering process, a homogeneous structure with defects specific to additive processes (voids) was revealed. Additionally, the feasibility of designing, manufacturing through the selective laser sintering process and subsequent testing of some components (rotor, right case, left case and motor mount) from a brushless motor made from A6 steel material was demonstrated. After testing the brushless motor, the main performances showed stable behavior of the motor and a linear dependence with the increase in electronic speed control signal or motor electrical speed, resulting in a maximum thrust force of 4.68 kgf at 7800 RPM

    Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Process

    No full text
    In three-dimensional (3D) printing, one of the main parameters influencing the properties of 3D-printed materials is the infill density (ID). This paper presents the influence of ID on the microstructure, mechanical, and thermal properties of carbon fiber-reinforced composites, commercially available, manufactured by the Fused Filament Fabrication (FFF) process. The samples were manufactured using FFF by varying the infill density (25%, 50%, 75%, and 100%) and were subjected to tensile tests, three-point bending, and thermal analyses by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). It was shown that the samples with 100% ID had the highest values of both tensile, 90.8 MPa, and flexural strengths, 114 MPa, while those with 25% ID had the lowest values of 56.4 MPa and 62.2 MPa, respectively. For samples with infill densities of 25% and 50%, the differences between the maximum tensile and flexural strengths were small; therefore, if the operating conditions of the components allow, a 25% infill density could be used instead of 50%. After DSC analysis, it was found that the variation in the ID percentage determined the change in the glass transition temperature from 49.6 °C, for the samples with 25% ID, to 32.9 °C, for those with 100% ID. TGA results showed that the samples with IDs of 75% and 100% recorded lower temperatures of onset degradation (approximately 344.75 °C) than those with infill densities of 25% and 50% (348.5 °C, and 349.6 °C, respectively)

    Simulation, Fabrication and Testing of UAV Composite Landing Gear

    No full text
    This study concerns the use of the fused filament fabrication technique to create models of the landing gear of an unmanned aircraft. These components are made of filament with short fibers (chopped fibers) of carbon fiber and fiberglass. In order to identify the material with the high mechanical strength, the designed models were subjected to a finite element analysis and to a three-point bending test, followed by a microscopic examination of the tested components. Following a comparative study, both the finite element analysis results and the three-point bending test results provided similar results, with a relative error of 2%, which is acceptable in the aviation field. After analyzing all the results, it was found that the carbon fiber-reinforced polymer material has the highest mechanical performance, with a bending strength of 1455 MPa. Among the fused filament fabricated landing gears, the one with the best mechanical performance was polyethylene terephthalate with short carbon fiber, which had a bending strength of 118 MPa. Microscopic analysis of the landing gear models, manufactured by the fused filament fabrication process, indicated the typical defects of composite filaments: voids and interlayer voids
    corecore