6 research outputs found

    Importance of Timing of Platelet Lysate-Supplementation in Expanding or Redifferentiating Human Chondrocytes for Chondrogenesis

    Get PDF
    Osteoarthritis (OA) in articular joints is a prevalent disease. With increasing life expectancy, the need for therapies other than knee replacement arises. The intrinsic repair capacity of cartilage is limited, therefore alternative strategies for cartilage regeneration are being explored. The purpose of this study is first to investigate the potential of platelet lysate (PL) as a xeno-free alternative in expansion of human OA chondrocytes for cell therapy, and second to assess the effects of PL on redifferentiation of expanded chondrocytes in 3D pellet cultures. Chondrocytes were isolated from human OA cartilage and subjected to PL in monolayer culture. Cell proliferation, morphology, and expression of chondrogenic genes were assessed. Next, PL-expanded chondrocytes were cultured in 3D cell pellets and cartilage matrix production was assessed after 28 days. In addition, the supplementation of PL to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by quantitative biochemical analyses, as well as by (immuno)histochemistry. A dose-dependent effect of PL on chondrocyte proliferation was found, but expression of chondrogenic markers was decreased when compared to FBS-expanded cells. After 28 days of subsequent 3D pellet culture, GAG production was significantly higher in pellets consisting of chondrocytes expanded with PL compared to controls. However, when used to supplement redifferentiation medium for chondrocyte pellets, PL significantly decreased the production of GAGs and collagen. In conclusion, chondrocyte proliferation is stimulated by PL and cartilage production in subsequent 3D culture is maintained. Furthermore, the presences of PL during redifferentiation of 3D chondrocyte strongly inhibits GAG and collagen content. The data presented in the current study indicate that while the use of PL for expansion in cartilage cell therapies is possibly beneficial, intra-articular injection of the product in the treatment of OA might be questioned

    PTH decreases in vitro human cartilage regeneration without affecting hypertrophic differentiation

    No full text
    Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 μM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues' extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes

    PTH decreases in vitro human cartilage regeneration without affecting hypertrophic differentiation

    No full text
    Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1–34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 μM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues’ extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes

    Importance of Timing of Platelet Lysate-Supplementation in Expanding or Redifferentiating Human Chondrocytes for Chondrogenesis

    No full text
    Osteoarthritis (OA) in articular joints is a prevalent disease. With increasing life expectancy, the need for therapies other than knee replacement arises. The intrinsic repair capacity of cartilage is limited, therefore alternative strategies for cartilage regeneration are being explored. The purpose of this study is first to investigate the potential of platelet lysate (PL) as a xeno-free alternative in expansion of human OA chondrocytes for cell therapy, and second to assess the effects of PL on redifferentiation of expanded chondrocytes in 3D pellet cultures. Chondrocytes were isolated from human OA cartilage and subjected to PL in monolayer culture. Cell proliferation, morphology, and expression of chondrogenic genes were assessed. Next, PL-expanded chondrocytes were cultured in 3D cell pellets and cartilage matrix production was assessed after 28 days. In addition, the supplementation of PL to redifferentiation medium for the culture of expanded chondrocytes in 3D pellets was evaluated. Glycosaminoglycan (GAG) and collagen production were evaluated by quantitative biochemical analyses, as well as by (immuno)histochemistry. A dose-dependent effect of PL on chondrocyte proliferation was found, but expression of chondrogenic markers was decreased when compared to FBS-expanded cells. After 28 days of subsequent 3D pellet culture, GAG production was significantly higher in pellets consisting of chondrocytes expanded with PL compared to controls. However, when used to supplement redifferentiation medium for chondrocyte pellets, PL significantly decreased the production of GAGs and collagen. In conclusion, chondrocyte proliferation is stimulated by PL and cartilage production in subsequent 3D culture is maintained. Furthermore, the presences of PL during redifferentiation of 3D chondrocyte strongly inhibits GAG and collagen content. The data presented in the current study indicate that while the use of PL for expansion in cartilage cell therapies is possibly beneficial, intra-articular injection of the product in the treatment of OA might be questioned

    PTH decreases in vitro human cartilage regeneration without affecting hypertrophic differentiation.

    No full text
    Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 μM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues' extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes

    PTH decreases in vitro human cartilage regeneration without affecting hypertrophic differentiation

    No full text
    Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1–34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes. Healthy human articular cartilage-derived chondrocytes (n = 6 donors) were cultured on type II collagen-coated transwells with/without 0.1 or 1.0 μM PTH from day 0, 9, or 21 until the end of culture (day 28). Extracellular matrix production, (pre)hypertrophy and PTH signaling were assessed by RT-qPCR and/or immunohistochemistry for collagen type I, II, X, RUNX2, MMP13, PTHR1 and IHH and by determining glycosaminoglycan production and DNA content. The Bern score assessed cartilage quality by histology. Regardless of the concentration and initiation of supplementation, PTH treatment significantly decreased DNA and glycosaminoglycan content and reduced the Bern score compared with controls. Type I collagen deposition was increased, whereas PTHR1 expression and type II collagen deposition were decreased by PTH supplementation. Expression of the (pre)hypertrophic markers MMP13, RUNX2, IHH and type X collagen were not affected by PTH. In conclusion, PTH supplementation to healthy human articular chondrocytes did not affect hypertrophic differentiation, but negatively influenced cartilage quality, the tissues’ extracellular matrix and cell content. Although PTH may be an effective inhibitor of hypertrophic differentiation in MSC-based cartilage repair, care may be warranted in applying accessory PTH treatment due to its effects on articular chondrocytes
    corecore