30 research outputs found

    Aseptic bone-flap resorption after cranioplasty - incidence and risk factors.

    No full text
    OBJECTIVE:One of the common complications occurring after cranioplasty (CP) is aseptic bone-flap resorption (ABFR). Reoperation necessary because of the development of ABFR can lead to unfavorable complications during subsequent surgery using a synthetic skull implant, and also necessarily leads to higher costs. The aim of this study is to identify prognostic factors that may help to predict the development of ABFR. METHODS:In this study, 303 CP surgeries performed between 2002 and 2017 were examined retrospectively to identify factors predicting the occurrence of ABFR. A number of these factors (e.g., time lapse between decompressive craniectomy (DC) and CP, bone-flap size, specific laboratory signs, and the reason for the original DC) were analyzed as possibly influencing the risk of developing ABFR. RESULTS:ABFR of an autologous bone flap that subsequently required a CP with synthetic skull implants occurred in 10 of 303 patients (3.0%). CP timing and patients' Karnofsky Performance Scores (KPS) (p = 0.008; p = 0.012) were identified as significant factors with an impact on the development of ABRF. Age did not reveal a significant value, but statistical analysis shows a clear trend. The younger the age, the more likely it was that an ABFR would develop. CONCLUSION:The risk of ABFR lessens the longer the period of time elapsed between DC and CP. Age does not reveal a significant value, but statistical analysis shows that there is a clear trend

    Impact of acetylsalicylic acid in patients undergoing cerebral aneurysm surgery – should the neurosurgeon really worry about it?

    No full text
    There has been an increase in the use of acetylsalicylic acid (ASA, Aspirin®) among patients with stroke and heart disease as well as in aging populations as a means of primary prevention. The potentially life-threatening consequences of a postoperative hemorrhagic complication after neurosurgical operative procedures are well known. In the present study, we evaluate the risk of continued ASA use as it relates to postoperative hemorrhage and cardiopulmonary complications in patients undergoing cerebral aneurysm surgery. We retrospectively analyzed 200 consecutive clipping procedures performed between 2008 and 2018. Two different statistical models were applied. The first model consisted of two groups: (1) group with No ASA impact - patients who either did not use ASA at all as well as those who had stopped their use of the ASA medication in time (> = 7 days prior to operation); (2) group with ASA impact - all patients whose ASA use was not stopped in time. The second model consisted of three groups: (1) No ASA use; (2) Stopped ASA use (> = 7 days prior to operation); (3) Continued ASA use (did not stop or did not stop in time, <7 days prior to operation). Data collection included demographic information, surgical parameters, aneurysm characteristics, and all hemorrhagic/thromboembolic complications. A postoperative hemorrhage was defined as relevant if a consecutive operation for hematoma removal was necessary. An ASA effect has been assumed in 32 out of 200 performed operations. A postoperative hemorrhage occurred in one out these 32 patients (3.1%). A postoperative hemorrhage in patients without ASA impact was detected and treated in 5 out of 168 patients (3.0%). The difference was statistically not significant in either model (ASA impact group vs. No ASA impact group: OR = 1.0516 [0.1187; 9.3132], p = 1.000; RR = 1.0015 [0.9360; 1.0716]). Cardiopulmonary complications were significantly more frequent in the group with ASA impact than in the group without ASA impact (p = 0.030). In this study continued ASA use was not associated with an increased risk of a postoperative hemorrhage. However, cardiopulmonary complications were significantly more frequent in the ASA impact group than in the No ASA impact group. Thus, ASA might relatively safely be continued in patients with increased cardiovascular risk and cases of emergency cerebrovascular surgery

    The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field

    No full text
    INTRODUCTION: Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. METHODS: The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. RESULTS: The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. CONCLUSION: The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system

    A proof-of-principle study of multi-site real-time functional imaging at 3T and 7T: Implementation and validation

    No full text
    Real-time functional Magnetic Resonance Imaging (rtfMRI) is used mainly for neurofeedback or for brain-computer interfaces (BCI). But multi-site rtfMRI could in fact help in the application of new interactive paradigms such as the monitoring of mutual information flow or the controlling of objects in shared virtual environments. For that reason, a previously developed framework that provided an integrated control and data analysis of rtfMRI experiments was extended to enable multi-site rtfMRI. Important new components included a data exchange platform for analyzing the data of both MR scanners independently and/or jointly. Information related to brain activation can be displayed separately or in a shared view. However, a signal calibration procedure had to be developed and integrated in order to permit the connecting of sites that had different hardware and to account for different inter-individual brain activation levels. The framework was successfully validated in a proof-of-principle study with twelve volunteers. Thus the overall concept, the calibration of grossly differing signals, and BCI functionality on each site proved to work as required. To model interactions between brains in real-time, more complex rules utilizing mutual activation patterns could easily be implemented to allow for new kinds of social fMRI experiments

    Phase-Contrast MRI Detection of Ventricular Shunt CSF Flow: Proof of Principle

    No full text
    BACKGROUND AND PURPOSE: The evaluation of a suspected malfunction of a ventricular shunt is a common procedure in neurosurgery. The evaluation relies on either the interpretation of the ventricular width using cranial imaging or invasive techniques. Several attempts have been made to measure the flow velocity of cerebrospinal fluid (CSF) utilizing different phase-contrast magnet resonance imaging (PC MRI) techniques. In the present study, we evaluated 3 T (Tesla) MRI scanners for their effectiveness in determining of flow in the parenchymal portion of ventricular shunt systems with adjustable valves containing magnets. METHODS: At first, an MRI phantom was used to measure the phase-contrasts at different constant low flow rates. The next step was to measure the CSF flow in patients treated with ventricular shunts without suspected malfunction of the shunt under observation. RESULTS: The measurements of the phantom showed a linear correlation between the CSF flow and corresponding phase values. Despite many artifacts resulting from the magnetic valves, the ventricular catheter within the parenchymal portion of shunt was not superimposed by artifacts at each PC MRI plane and clearly distinguishable in 9 of 12 patients. Three patients suffering from obstructive hydrocephalus showed a clear flow signal. CONCLUSION: CSF flow detected within the parenchymal portion of the shunt by PC MRI may reliably provide information about the functional status of a ventricular shunt. Even in patients whose hydrocephalus was treated with magnetic adjustable valves, the CSF flow was detectable using PC MRI sequences at 3 T field strength

    Risk factors for intracerebral hemorrhage in small-vessel disease and non-small-vessel disease etiologies—an observational proof-of-concept study

    No full text
    BackgroundSporadic cerebral small-vessel disease (CSVD), i.e., hypertensive arteriopathy (HA) and cerebral amyloid angiopathy (CAA), is the main cause of spontaneous intracerebral hemorrhage (ICH). Nevertheless, a substantial portion of ICH cases arises from non-CSVD etiologies, such as trauma, vascular malformations, and brain tumors. While studies compared HA- and CAA-related ICH, non-CSVD etiologies were excluded from these comparisons and are consequently underexamined with regard to additional factors contributing to increased bleeding risk beyond their main pathology.MethodsAs a proof of concept, we conducted a retrospective observational study in 922 patients to compare HA, CAA, and non-CSVD-related ICH with regard to factors that are known to contribute to spontaneous ICH onset. Medical records (available for n = 861) were screened for demographics, antithrombotic medication, and vascular risk profile, and CSVD pathology was rated on magnetic resonance imaging (MRI) in a subgroup of 185 patients. The severity of CSVD was assessed with a sum score ranging from 0 to 6, where a score of ≥2 was defined as advanced pathology.ResultsIn 922 patients with ICH (median age of 71 years), HA and CAA caused the majority of cases (n = 670, 73%); non-CSVD etiologies made up the remaining quarter (n = 252, 27%). Individuals with HA- and CAA-related ICH exhibited a higher prevalence of predisposing factors than those with non-CSVD etiologies. This includes advanced age (median age: 71 vs. 75 vs. 63 years, p < 0.001), antithrombotic medication usage (33 vs. 37 vs. 19%, p < 0.001), prevalence of vascular risk factors (70 vs. 67 vs. 50%, p < 0.001), and advanced CSVD pathology on MRI (80 vs. 89 vs. 51%, p > 0.001). However, in particular, half of non-CSVD ICH patients were either aged over 60 years, presented with vascular risk factors, or had advanced CSVD on MRI.ConclusionRisk factors for spontaneous ICH are less common in non-CSVD ICH etiologies than in HA- and CAA-related ICH, but are still frequent. Future studies should incorporate these factors, in addition to the main pathology, to stratify an individual’s risk of bleeding

    B1 flip angle map comparison of in vivo results from the TW Primate System and the Dual-Helmholtz primate volume head coil.

    No full text
    <p>Exemplary transversal slice of the B1 flip angle map in vivo results acquired with the TW Primate System (σ<sub>α, ROI1</sub> = 3.1°) (<b>a</b>). Exemplary coronal slice of the B1 flip angle map (in vivo results acquired with the TW Primate System) (σ<sub>α, ROI2</sub> = 3.9°) (<b>b</b>). Exemplary transversal slice of the B1 flip angle map acquired with the Dual-Helmholtz primate volume head coil (σ<sub>α, ROI3</sub> = 5.8°) (<b>c</b>). Exemplary coronal slice of the B1 flip angle map acquired with the Dual-Helmholtz primate volume head coil (σ<sub>α, ROI4</sub> = 5.9°) (<b>d</b>). (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129371#pone.0129371.s001" target="_blank">S1 File</a>)</p

    Mapping fine-scale anatomy of gray matter, white matter, and trigeminal-root region applying spherical deconvolution to high-resolution 7-T diffusion MRI

    No full text
    OBJECTIVES: We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region. MATERIALS AND METHODS: We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution. RESULTS:High-resolution fODFs enabled a detailed view of the intravoxel distributions of fiber populations in the whole brain. In the brainstem region, the fODF of the extra- and intrapontine parts of the trigeminus could be resolved. Intrapontine trigeminal fiber populations were crossed in a network-like fashion by fiber populations of the surrounding cerebellopontine tracts. In cortical GM, additional evidence was found that in parts of primary somatosensory cortex, fODFs seem to be oriented less perpendicular to the cortical surface than in GM of motor, premotor, and secondary somatosensory cortices. CONCLUSION: With 7-T MRI being introduced into clinical routine, high-resolution dMRI and derived measures such as fODFs can serve to characterize fine-scale anatomic structures as a prerequisite to detecting pathologies in GM and small or intertwined WM tracts

    Simulation model for SAR validation of the TW Primate System in vivo setup.

    No full text
    <p>(<b>1</b>) Simulation model of a monkey. Body with extremities and the head were segmented from anatomic MRI data of a crab-eating macaque in a sphinx position with fixation device; Voxel were ascribed with the electromagnetic permittivity values for body (ε<sub>r</sub> = 60) and eyes (ε<sub>r</sub> = 69). (<b>2</b>) Patch antenna (<b>3</b>) 3-element phased array primate head coil; (<b>4</b>) RF shield of the gradient system. Perspective view (<b>a</b>). Side view (<b>b</b>).</p
    corecore