640 research outputs found
Eigen-analysis of Inviscid Fluid Structure Interaction (FSI) Systems with Complex Boundary Conditions
A method for extracting the eigenvalues and eigenmodes from complex coupled fluid-structure interaction (FSI) systems is presented. The FSI system under consideration in this case is a one-sided, inviscid flow over a finite-length compliant surface with complex boundary conditions, although the method could be applied to any FSI system. The flow is solved for the inviscid case using a boundary-element method solution of Laplaceâs equation, while the finite compliant surface is solved through a finite-difference solution of the one-dimensional beam equation. The crux of the method lies in reducing the coupled fluid and structural equations down to a set of coupled linear differential equations. Standard Krylov subspace projection methods may then be used to determine the eigenvalues of the large system of linear equations. This method is applied to the analysis of hydroelastic FSI systems with complex boundary conditions that would be difficult or otherwise impossible to analyse using standard Galerkin methods. Specifically, the complex cases of inhomogeneous and discontinuous compliant wall properties and arbitrary hinge-joint conditions along the compliant surface are considered
Eigen-analysis of a Fully Viscous Boundary-Layer flow Interacting with a Finite Compliant Surface
A method and preliminary results are presented for the determination of eigenvalues and eigenmodes from fully viscous boundary layer flow interacting with a finite length one-sided compliant wall. This is an extension to the analysis of inviscid flow-structure systems which has been established in previous work. A combination of spectral and finite-difference methods are applied to a linear perturbation form of the full Navier-Stokes equations and one-dimensional beam equation. This yields a system of coupled linear equations that accurately define the spatio-temporal development of linear perturbations to a boundary layer flow over a finite-length compliant surface. Standard Krylov subspace projection methods are used to extract the eigenvalues from this complex system of equations. To date, the analysis of the development of Tollmien-Schlichting (TS) instabilities over a finite compliant surface have relied upon DNS-type results across a narrow (or even singular) spectrum of TS waves. The results from this method have the potential to describe conclusively the role that a finite length compliant surface has in the development of two-dimensional TS instabilities and other FSI instabilities across a broad spectrum
Detection of Bulk Motions in the ICM of the Centaurus Cluster
Several recent numerical simulations of off-center cluster mergers predict
that significant angular momentum with associated velocities of a few x 10^{3}
km/s can be imparted to the resulting cluster. Such gas bulk velocities can be
detected by the Doppler shift of X-ray spectral lines with ASCA spectrometers.
Using two ASCA observations of the Centaurus cluster, we produced a velocity
map for the gas in the cluster's central regions. We also detected radial and
azimuthal gradients in temperature and metal abundance distributions, which
seem to be associated with the infalling sub-group centered at NGC 4709 (Cen
45). More importantly, we found a significant (>99.8% confidence level)
velocity gradient along a line near-perpendicular to the direction of the
incoming sub-group and with a maximum velocity difference of ~3.4+-1.1 x 10^{3}
km/s. It is unlikely (P < 0.002) that the observed velocity gradient is
generated by gain fluctuations across the detectors. While the observed
azimuthal temperature and abundance variations can be attributed to the
interaction with Cen 45, we argue that the intracluster gas velocity gradient
is more likely due to a previous off-center merging event in the main body of
the Centaurus cluster.Comment: 13 pages in emulateapj5 style, 8 postscript figures; Accepted by ApJ;
Revised version with minor change
The Dipole Anisotropy of the First All-Sky X-ray Cluster Sample
We combine the recently published CIZA galaxy cluster catalogue with the
XBACs cluster sample to produce the first all-sky catalogue of X-ray clusters
in order to examine the origins of the Local Group's peculiar velocity without
the use of reconstruction methods to fill the traditional Zone of Avoidance.
The advantages of this approach are (i) X-ray emitting clusters tend to trace
the deepest potential wells and therefore have the greatest effect on the
dynamics of the Local Group and (ii) our all-sky sample provides data for
nearly a quarter of the sky that is largely incomplete in optical cluster
catalogues. We find that the direction of the Local Group's peculiar velocity
is well aligned with the CMB as early as the Great Attractor region 40 h^-1 Mpc
away, but that the amplitude of its dipole motion is largely set between 140
and 160 h^-1 Mpc. Unlike previous studies using galaxy samples, we find that
without Virgo included, roughly ~70% of our dipole signal comes from mass
concentrations at large distances (>60 h^-1 Mpc) and does not flatten,
indicating isotropy in the cluster distribution, until at least 160 h^-1 Mpc.
We also present a detailed discussion of our dipole profile, linking observed
features to the structures and superclusters that produce them. We find that
most of the dipole signal can be attributed to the Shapley supercluster
centered at about 150 h^-1 Mpc and a handful of very massive individual
clusters, some of which are newly discovered and lie well in the Zone of
Avoidance.Comment: 15 Pages, 9 Figures. Accepted by Ap
Fracture toughness testing using photogrammetry and digital image correlation
Digital image correlation (DIC) is an optical technique commonly used for measuring displacement fields by tracking artificially applied random speckle patterns, which can sometimes be a problem for tracking small-scale displacements. DIC is particularly useful for tracking the crack mouth opening displacement (CMOD) of a notched metallic specimen subjected to three-point bending for fracture toughness determination because the edges of the notch provide the required textural features for DIC without the need for speckle patterns. This simplifies the set-up process as the specimen and stage geometries do not need to account for the placement of a strain gauge. To enhance the accuracy of DIC, this study then successfully downscaled a photogrammetry technique commonly used to track crack propagation in large scale concrete tests so that the pixel coordinates of the captured images can be automatically related to their real-world coordinates, allowing for small scale displacements to be accurately tracked.ARC Linkage Project LP130100111, ARC DECRA DE15010170
Morphological Evolution and the Ages of Early-Type Galaxies in Clusters
Morphological and spectroscopic studies of high redshift clusters indicate
that a significant fraction of present-day early-type galaxies was transformed
from star forming galaxies at z<1. On the other hand, the slow luminosity
evolution of early-type galaxies and the low scatter in their color-magnitude
relation indicate a high formation redshift of their stars. In this paper we
construct models which reconcile these apparently contradictory lines of
evidence, and we quantify the effects of morphological evolution on the
observed photometric properties of early-type galaxies in distant clusters. We
show that in the case of strong morphological evolution the apparent luminosity
and color evolution of early-type galaxies are similar to that of a single age
stellar population formed at z=infinity, irrespective of the true star
formation history of the galaxies. Furthermore, the scatter in age, and hence
the scatter in color and luminosity, is approximately constant with redshift.
These results are consequences of the ``progenitor bias'': the progenitors of
the youngest low redshift early-type galaxies drop out of the sample at high
redshift. We construct models which reproduce the observed evolution of the
number fraction of early-type galaxies in rich clusters and their color and
luminosity evolution simultaneously. Our modelling indicates that approx. 50%
of early-type galaxies were transformed from other galaxy types at z<1, and
their progenitor galaxies may have had roughly constant star formation rates
prior to morphological transformation. After correcting the observed evolution
of the mean M/L_B ratio for the maximum progenitor bias we find that the mean
luminosity weighted formation redshift of stars in early-type galaxies
z_*=2.0^{+0.3}_{-0.2} for Omega_m=0.3 and Omega_Lambda=0.7. [ABRIDGED]Comment: Accepted for publication in The Astrophysical Journal. 13 pages, 6
figure
The Evolution of a Mass-Selected Sample of Early-Type Field Galaxies
We investigate the evolution of mass-selected early-type field galaxies using
a sample of 28 gravitational lenses spanning the redshift range 0 < z < 1.
Based on the redshift-dependent intercept of the fundamental plane in the rest
frame B band, we measure an evolution rate of d log (M/L)_B / dz = -0.56 +/-
0.04 (all errors are 1 sigma unless noted) if we directly compare to the local
intercept measured from the Coma cluster. Re-fitting the local intercept helps
minimize potential systematic errors, and yields an evolution rate of d log
(M/L)_B / dz = -0.54 +/- 0.09. An evolution analysis of properly-corrected
aperture mass-to-light ratios (defined by the lensed image separations) is
closely related to the Faber-Jackson relation. In rest frame B band we find an
evolution rate of d log (M/L)_B / dz = -0.41 +/- 0.21, a present-day
characteristic magnitude of M_{*0} = -19.70 + 5 log h +/- 0.29 (assuming a
characteristic velocity dispersion of sigma_{DM*} = 225 km/s), and a
Faber-Jackson slope of gamma_{FJ} = 3.29 +/- 0.58. The measured evolution rates
favor old stellar populations (mean formation redshift z_f > 1.8 at 2 sigma
confidence for a Salpeter initial mass function and a flat Omega_m =0.3
cosmology) among early-type field galaxies, and argue against significant
episodes of star formation at z < 1.Comment: 38 pages; 9 figs; ApJ accepted; REVISION: erroneous image separation
corrected for one lens, another lens removed; results recalculated and
slightly modifie
The WARPS Survey: VI. Galaxy Cluster and Source Identifications from Phase I
We present in catalog form the optical identifications for objects from the
first phase of the Wide Angle ROSAT Pointed Survey (WARPS). WARPS is a
serendipitous survey of relatively deep, pointed ROSAT observations for
clusters of galaxies. The X-ray source detection algorithm used by WARPS is
Voronoi Tessellation and Percolation (VTP), a technique which is equally
sensitive to point sources and extended sources of low surface brightness.
WARPS-I is based on the central regions of 86 ROSAT PSPC fields, covering an
area of 16.2 square degrees. We describe here the X-ray source screening and
optical identification process for WARPS-I, which yielded 34 clusters at
0.06<z<0.75. Twenty-two of these clusters form a complete, statistically well
defined sample drawn from 75 of these 86 fields, covering an area of 14.1
square degrees, with a flux limit of F (0.5-2.0 keV) = 6.5 \times 10^{-14} erg
cm^{-2} s^{-1}}. This sample can be used to study the properties and evolution
of the gas, galaxy and dark matter content of clusters, and to constrain
cosmological parameters. We compare in detail the identification process and
findings of WARPS to those from other recently published X-ray surveys for
clusters, including RDCS, SHARC-Bright, SHARC-south and the CfA 160 deg
survey.Comment: v3 reflects minor updates to tables 2 and
On the lease rate, convenience yield and speculative effects in the gold futures market
By examining data on the gold forward offered rate (GOFO) and lease rates over the period 1996- 2009, we conclude that the convenience yield of gold is better approximated by the lease rate than the interest-adjusted spread of Fama & French (1983). Using the latter quantity, we study the relationship between gold leasing and the level of COMEX discretionary inventory and exhibit that lease rates are negatively related to inventories. We also show that Futures prices have increasingly exceeded forward prices over the period, and this effect increases with the speculative pressure and the maturity of the contracts
Environmental Effects in the Structural Parameters of Galaxies in the Coma Cluster
We have studied 116 bright galaxies from the Coma cluster brighter than
mag. From a quantitative morphological analysis we find that the
scales of the disks are smaller than those of field spiral galaxies. There is a
correlation between the scale of the disks and the position of the galaxy in
the cluster; no large disks are present near the center of the cluster or in
high density environments. The structural parameters of the bulges are not
affected by the environment. We have analyzed the distribution of blue and red
objects in the cluster. For spirals there is a trend between color and position
in the cluster. The bluest spiral galaxies are located at larger projected
radii; they also show larger velocity dispersions than the red ones. The
differences in the scale of the disks between cluster galaxies and local
samples of isolated galaxies and the color distribution of the objects can be
understood in terms of the harassment scenario.Comment: 39 pages, 17 figures. Accepted for publication in A
- âŠ