6,406 research outputs found
Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond
We demonstrate the application of two-photon absorption transient current
technique to wide bandgap semiconductors. We utilize it to probe charge
transport properties of single-crystal Chemical Vapor Deposition (scCVD)
diamond. The charge carriers, inside the scCVD diamond sample, are excited by a
femtosecond laser through simultaneous absorption of two photons. Due to the
nature of two-photon absorption, the generation of charge carriers is confined
in space (3-D) around the focal point of the laser. Such localized charge
injection allows to probe the charge transport properties of the semiconductor
bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the
generated charge, the electrical field of the diamond bulk was mapped at
different depths and compared to an X-ray diffraction topograph of the sample.
Measurements utilizing this method provide a unique way of exploring spatial
variations of charge transport properties in transparent wide-bandgap
semiconductors.Comment: This article may be downloaded for personal use only. Any other use
requires prior permission of the author and AIP Publishing. The following
article appeared in Applied Physics Letters and may be found at
https://doi.org/10.1063/1.509085
Isolated Intraocular Relapse of Pediatric B-cell Precursor Acute Lymphoblastic Leukaemia Following Chimeric Antigen Receptor T-lymphocyte Therapy
Chimeric antigen receptor T-lymphocytes (CAR T) targeting the CD19 surface antigen have achieved a breakthrough in the treatment of multiply relapsed and refractory bone marrow (BM) disease in childhood B-cell precursor acute lymphoblastic leukaemia (B-ALL). The ability of CAR T therapy to treat extramedullary (EM) disease is less proven. However, early reports suggest trafficking of CART-cells to the central nervous system (CNS) as well as other EM sites. We describe a case of isolated intraocular relapse of pediatric B-ALL following CAR T-cell therapy, which had successfully controlled multiply relapsed BM and CNS disease. CAR T-cells may not be able to traffic into the eye, making it a "sanctuary" site during therapy
Exploring the role of composition and mass loading on the properties of hadronic jets
Astrophysical jets are relativistic outflows that remain collimated for remarkably many orders of magnitude. Despite decades of research, the origin of cosmic rays (CRs) remains unclear, but jets launched by both supermassive black holes in the centre of galaxies and stellar-mass black holes harboured in X-ray binaries (BHXBs) are among the candidate sources for CR acceleration. When CRs accelerate in astrophysical jets, they initiate particle cascades that form gamma-rays and neutrinos. In the so-called hadronic scenario, the population of accelerated CRs requires a significant amount of energy to properly explain the spectral constraints, similarly to a purely leptonic scenario. The amount of energy required often exceeds the Eddington limit or even the total energy available within the jets. The exact energy source for the accelerated protons is unclear, but due to energy conservation along the jets, it is believed to come from the jet itself via transfer of energy from the magnetic fields or kinetic energy from the outflow. To address this hadronic energy issue and to self-consistently evolve the energy flux along the flows, we explore a novel treatment for including hadronic content, in which instabilities along the jet/wind border play a critical role. We discuss the impact of the different jet compositions on the jet dynamics for a pair dominated and an electron-proton jet and, consequently, the emitted spectrum, accounting for both leptonic and hadronic processes. Finally, we discuss the implications of this mass-loading scenario to address the proton energy issue
Management of Occupational Manganism: Consensus of an Experts' Panel
Studies and Research Projects / Report R-417, Montréal, IRSST http://www.irsst.qc.ca/en/_publicationirsst_100134.html
(Lucchini R was a member of the Expert Panel
Correlating spectral and timing properties in the evolving jet of the micro blazar MAXI J1836-194
During outbursts, the observational properties of black hole X-ray binaries
(BHXBs) vary on timescales of days to months. These relatively short timescales
make these systems ideal laboratories to probe the coupling between accreting
material and outflowing jets as a the accretion rate varies. In particular, the
origin of the hard X-ray emission is poorly understood and highly debated. This
spectral component, which has a power-law shape, is due to Comptonisation of
photons near the black hole, but it is unclear whether it originates in the
accretion flow itself, or at the base of the jet, or possibly the interface
region between them. In this paper we explore the disk-jet connection by
modelling the multi-wavelength emission of MAXI J1836-194 during its 2011
outburst. We combine radio through X-ray spectra, X-ray timing information, and
a robust joint-fitting method to better isolate the jet's physical properties.
Our results demonstrate that the jet base can produce power-law hard X-ray
emission in this system/outburst, provided that its base is fairly compact and
that the temperatures of the emitting electrons are sub-relativistic. Because
of energetic considerations, our model favours mildly pair-loaded jets carrying
at least 20 pairs per proton. Finally, we find that the properties of the X-ray
power spectrum are correlated with the jet properties, suggesting that an
underlying physical process regulates both.Comment: 17 pages, 10 figures, accepted for publication on MNRA
Correlating spectral and timing properties in the evolving jet of the microblazar MAXI J1836-194
During outbursts, the observational properties of black hole X-ray binaries vary on time-scales of days to months. These relatively short time-scales make these systems ideal laboratories to probe the coupling between accreting material and outflowing jets as the accretion rate varies. In particular, the origin of the hard X-ray emission is poorly understood and highly debated. This spectral component, which has a power-law shape, is due to Comptonization of photons near the black hole, but it is unclear whether it originates in the accretion flow itself, or at the base of the jet, or possibly the interface region between them. In this paper, we explore the disc-jet connection by modelling the multiwavelength emission of MAXI J1836-194 during its 2011 outburst. We combine radio through X-ray spectra, X-ray timing information, and a robust joint-fitting method to better isolate the jet\u27s physical properties. Our results demonstrate that the jet base can produce power-law hard X-ray emission in this system/outburst, provided that its base is fairly compact and that the temperatures of the emitting electrons are subrelativistic. Because of energetic considerations, our model favours mildly pair-loaded jets carrying at least 20 pairs per proton. Finally, we find that the properties of the X-ray power spectrum are correlated with the jet properties, suggesting that an underlying physical process regulates both
The prototype X-ray binary GX 339-4:using TeV γ-rays to assess LMXBs as Galactic cosmic ray accelerators
Since the discovery of cosmic rays (CRs) over a century ago, their origin
remains an open question. Galactic CRs with energy up to the knee (
eV) are considered to originate from supernova remnants, but this scenario has
recently been questioned due to lack of TeV -ray counterparts in many
cases. Extragalactic CRs on the other hand, are thought to be associated with
accelerated particles in the relativistic jets launched by supermassive
accreting black holes at the center of galaxies. Scaled down versions of such
jets have been detected in X-ray binaries hosting a stellar black hole (BHXBs).
In this work, we investigate the possibility that the smaller-scale jets in
transient outbursts of low-mass BHXBs could be sources of Galactic CRs. To
better test this scenario, we model the entire electromagnetic spectrum of such
sources focusing on the potential TeV regime, using the `canonical' low-mass
BHXB GX 339-4 as a benchmark. Taking into account both the leptonic radiative
processes and the -rays produced via neutral pion decay from inelastic
hadronic interactions, we predict the GeV and TeV -ray spectrum of GX
339-4 using lower-frequency emission as constraints. Based on this test-case of
GX 339-4 we investigate whether other, nearby low-mass BHXBs could be detected
by the next-generation very-high-energy -ray facility the Cherenkov
Telescope Array, which would establish them as additional and numerous
potential sources of CRs in the Galaxy.Comment: 13 pages, 12 figures, accepted to MNRA
Convective condensation of R449a inside a smooth tube
The HVAC sector has started the phase-out of refrigerants characterized by high values of global warming potential and atmospheric lifetime. Drop-in replacement requires that the new, environmentally safe fluids also show comparable heat transfer performances. This work addresses R449a, a low GWP zeotropic mixture (components: R32, R125, R1234yf, R134a, mass fractions: 24.3%, 24.7%, 25.3%, 25.7%, respectively), suitable to replace both R404A and R507A. Experiments were carried out on condensation in horizontal smooth tubes (outer diameter: 9.52 mm, thickness: 0.3 mm). The range of operating conditions meets the standard for HVAC devices (operating pressure: 14.46 bar, bubble temperature: 30°C, temperature glide: approximately 5 K refrigerant mass flux ranging from 136 to 202 kg m−2 s−1, quality change -0.8 and -0.2, mean quality ranging from 0.2 to 0.8). The test section is the inner pipe in a tube-in-tube counter-flow heat exchanger, where the refrigerant is cooled by a demineralized water stream in the annulus. Both the pressure drop and the heat transfer coefficient were measured across a length of 1.3 m and 1.1 m, respectively
- …