2 research outputs found

    Embouchure Interaction Model for Brass Instruments

    Get PDF
    A common approach for simulating brass instrument sounds is that of a mass-spring system strongly coupled to an air tube resonator of a certain length. This approach, while yielding good quality timbre results for the synthesized audio, does not aid expressive sound synthesis. An improvement of this modeling design is proposed, which takes into account the independent movement of the embouchure and its influence on the sound. To achieve this interaction, vortex-induced vibration (VIV) is taken into account as an additional source of excitation for the mass-spring system. In addition to this, the model also simulates breath noise of a brass instrument player, which is dependent of the embouchure’s aperture dimensionality. The end result is a real-time VST application of a brass instrument with augmented embouchure interaction. The process loop of the VST is presented step-by-step and the application is evaluated both through informal listening and spectral measurements. From this evaluation, the model showcases a more varied and veridic timbre of brass sound, that supports a more expressive playing style

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore