4,286 research outputs found

    The use of thermally expandable microcapsules for increasing the toughness and heal structural adhesives

    Get PDF
    In this research, the effect of thermally expandable microcapsules (TEMs) on mode I fracture toughness of structural adhesives were investigated. The single-edge-notch bending (SENB) test was used. Firstly, a standard toughness test was performed on adhesives with microcapsules. Secondly, since TEMs start their expansion at approximately 60ºC, the next specimens were fatigue tested expecting a local heating in the notch leading to the desired expansion before being statically loaded for fracture toughness determination. Thirdly, a manual local heating at 90ºC was applied in the notch before the fracture static test. The experimental results were successfully cross-checked through a numerical analysis using the virtual crack closure technique (VCCT) based on linear elastic fracture mechanics (LEFM). The major conclusion is that fracture toughness of the modified adhesives increased as the mass fraction of the TEMs increased

    The use of thermally expandable microcapsules for increasing the toughness and heal structural adhesives

    Get PDF
    In this research, the effect of thermally expandable microcapsules (TEMs) on mode I fracture toughness of structural adhesives were investigated. The single-edge-notch bending (SENB) test was used. Firstly, a standard toughness test was performed on adhesives with microcapsules. Secondly, since TEMs start their expansion at approximately 60ºC, the next specimens were fatigue tested expecting a local heating in the notch leading to the desired expansion before being statically loaded for fracture toughness determination. Thirdly, a manual local heating at 90ºC was applied in the notch before the fracture static test. The experimental results were successfully cross-checked through a numerical analysis using the virtual crack closure technique (VCCT) based on linear elastic fracture mechanics (LEFM). The major conclusion is that fracture toughness of the modified adhesives increased as the mass fraction of the TEMs increased

    Tensile behaviour of a structural adhesive at high temperatures by the extended finite element method

    Get PDF
    Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures

    Strength improvement of adhesively-bonded joints using a reverse-bent geometry

    Get PDF
    Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique

    Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer

    Get PDF
    Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions

    Adherend thickness effect on the tensile fracture toughness of a structural adhesive using an optical data acquisition method

    Get PDF
    Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions

    Optimization study of hybrid spot-welded/bonded single-lap joints

    Get PDF
    Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints

    Implementing geometry-related environmental indicators in a 3d-gis

    Get PDF
    This paper highlights the suitability of applying a 3D GIS to analyze geometry-related environmental indicators. The work starts with a discussion and application of a tool developed to identify sky view factors. Called 3DSKYVIEW extension, this tool was produced as part of a research cooperation effort established between Brazil and Portugal to identify common urban environmental indicators for their medium sized cities. The sky view factor (SVF) is a parameter used to characterize radiation properties on urban areas and to express the relationship between the visible area of the sky and the portion of the sky covered by buildings viewed from a specific point of observation. The 3DSKYVIEW extension is an algorithm developed by applying the software ArcView GIS1 and its 3D Analyst extension, allowing an automatic delineation of the visible sky and obstructions. The implementation of this tool in a 3D GIS is useful because it allows straight and quick urban geometry analysis from several points of observation. Furthermore, it can be seen as a single environmental indicator of thermal, lighting and acoustical performance of urban areas, as suggested by the exploratory study conducted in a medium-sized Brazilian city and summarized in this paper

    Cidades sustentáveis: um desafio comum para Brasil e Portugal

    Get PDF
    Como conseqüência dos crescentes problemas ambientais, econômicos e sociais de muitas cidades faz-se necessária a criação de métodos para o acompanhamento e gestão do crescimento urbano, de tal forma que se possa promover os conceitos de desenvolvimento sustentável e qualidade de vida urbana. A implementação de estratégias para este fim deve partir da investigação e análise crítica da condição atual de desenvolvimento das cidades, a partir de indicadores que devem refletir o contexto específico em que se inserem. Desta forma, o presente trabalho tem por objetivo realizar uma discussão acerca da problemática de sustentabilidade urbana dirigida a um contexto particular: cidades de pequeno e médio portes no Brasil e em Portugal. O primeiro passo é a identificação das principais características geopolíticas, nos dois países, daquilo que constitui o objeto de estudo deste trabalho: as cidades. A breve discussão que se segue, baseada neste diagnóstico preliminar e em inúmeros trabalhos já produzidos sobre as cidades dos dois países, aponta para algumas preocupações que devem estar presentes na definição de indicadores de sustentabilidade urbana para o contexto específico de Brasil e Portugal, resumidas em três aspectos principais: o desafio da mobilidade, o desafio ambiental e o desafio da eficiência
    • …
    corecore