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†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: {lucas.gasparino, oriol.lehmkuhl, daniel.mira}@bsc.es

Keywords—Compressible flow, CFD, LES, FEM, Numerical
Simulation, Hyperbolic problems.

I. EXTENDED ABSTRACT

This work focuses on developing a highly accurate Finite
Element numerical scheme for Large-Eddy simulation of tur-
bulent compressible flows, where low numerical dissipation
is required. The proposition is to develop a low-dissipation
stabilizing term into an algorithm, implement it on a readily-
available CFD code and test results to assess performance and
suitability.

A. Discretisation basics

In general, numerical solution of partial differential equations
like the Navier-Stokes set governing fluid flow involves some
form of space-time discretisation procedure, where the physical
domain is divided into a set of points called grid, or a set of
connected subdomains referred to as elements or volumes. If
the problem is transient, then the continuous time must also
be subdivided and discretised to allow for a local temporal
solution. In finite elements, the simplest form of discretisation
procedure is the Continuous Galerkin method, which yields a
central-like, 2nd order discrete solution to the problem.

For convection dominated problems (those containing a
transport-like term), direct application of a standard FE tech-
nique often results in oscillatory, or fully unstable, solutions,
and therefore some form of stabilization is required, generally
referred to as artificial diffusion, as the added terms have this
exact behavior. Common stabilized methods are the Streamline
Upwind Petrov Galerkin method (SUPG) and its variations,
which achieve a stable solution by effectively reducing dis-
cretization order, ensuring the scheme remains monotonicity
preserving.

Compared to a standard Galerkin discretization procedure,
classical stabilized methods such as SUPG and nth Taylor-
Galerkin are known to introduce strong diffusion terms into
the discrete Navier-Stokes equations, compatible with their
low-order nature. Although this has minor influence over
RANS and URANS models, Large-Eddy and Direct-Numerical
simulations (LES and DNS) are heavily affected by it, and one
is forced to move towards high-order central schemes, which
have narrow stability ranges. In the compressible range, the hy-
perbolic nature of the problem exacerbates this stability issues,
and if shock waves form, or any other form of discontinuity
exists, the method fails completely. As Finite Volume schemes
solve this issue by means of Riemann solvers on the shock and

use of flux limiters that reduce the scheme’s order locally, these
are quite complex to implement in Finite Elements, and thus
a different approach is necessary.

B. Entropy Viscosity and uniqueness of solutions

Research on stabilization of general hyperbolic problems has
led to the development of a low-dissipation nonlinear term
named Entropy Viscosity, which, when used in a Finite Ele-
ments context, behaves in a similar way to a FV flux-limiter,
i.e., ensuring that 1st order solutions are employed only at high
gradient regions, such as a shock or interface.

This method is based on the answer of a purely mathematical
question: to find a unique solution for a general hyperbolic
equation. As the strong form of this problem is not approach-
able, a viscous solution is sought that satisfies a weak form
of the reformulated conservation law. The true solution is then
found by assuming the limiting case where viscosity vanishes.
Such viscous solution is referred to as the entropy solution of
the hyperbolic problem, as it must satisfy Kružkov’s entropy
condition.

The mathematical theory described above lends itself well to a
Finite Element discretisation procedure, as Kružkov’s entropy
condition is already stated in an ideal weak form. Moreover,
it was found that the theory developed for 1D scalar cases
can be directly extended to multi-dimensional hyperbolic (and
quasi-hyperbolic) systems like the Euler and Navier Stokes
equations, even if a nonlinear source term exists. This indicates
a possible candidate for a low-dissipation algorithm theory.

C. Research steps

The first part of this research project has focused on adapting
the generic concept developed on hyperbolic equations to
the 1D Euler system describing inviscid compressible flows,
as well as studying in practice how well it worked when
compared to other approaches. Following previous work al-
ready developed by Guermond et. al. led to a unique imple-
mentation in the FE context, which has shown remarkably
good performance overall. It is worth mentioning that this
method lends itself well to explicit temporal discretization,
and was only explored in this context. One interesting, and
quite useful, property of the scheme is its capability for
handling nonlinear source terms, such as the ones appearing
in combustion problems.
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D. Conclusion

The initial success of this study encourages extending
the method to 2D and 3D applications of viscous flows,
where turbulence is allowed to develop in the latter case.
Applications to be tested range from thermally affected
incompressible laminar flows to LES in subsonic regime
and, should these work as expected, chemically reacting and
transonic cases with weak shock formation. This later part is
to be coupled with the in-house code Alya, a Finite-Elements
multiphysics software. Should this research prove successful,
the result will be a big step forward to its CFD capabilities in
compressible turbulent ranges.
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