4 research outputs found

    Evaluation of immunological mechanisms associated with autologous hematopoietic stem cell transplantation in systemic sclerosis patients

    No full text
    O transplante autólogo de células-tronco hematopoéticas (TACTH) tem se mostrado mais eficaz como tratamento das formas graves da esclerose sistêmica (ES) do que a imunossupressão convencional (IS), porém os mecanismos imunológicos envolvidos com a resposta terapêutica não estão completamente elucidados. Células mononucleares do sangue periférico e soro/plasma foram coletados de 31 pacientes com ES antes e semestralmente, até 36 meses pós-transplante, e de 16 pacientes com ES não-transplantados tratados com IS. A função tímica foi avaliada por RT-qPCR dos valores de b- e signal joint (sj)-T-cell receptor excision circles (TREC), sendo a taxa de proliferação intratímica (n) calculada pela fórmula: n=LOG(sjTREC/bTREC)/LOG2. A história replicativa das células B e a função medular foram quantificadas pelos valores de coding-joint (Cj) e sj-kappa-deleting recombination excision circles (sjKREC) e a taxa de proliferação das células B no sangue periférico (N) foi calculada pela fórmula: N=LOG(Cj/sjKREC)/LOG2. O comprimento telomérico foi avaliado por RT-qPCR e estimado pela razão T/S (Telomere repeat copy number/Single-copy gene copy number). As células recém-emigradas do timo (RET) CD3+CD4+CD31+CD45RA+, T reguladoras (Tregs) CD4+CD25hiFoxP3+(GITR+/CTLA-4+), naïve CD19+CD27-IgD+, Bm2 CD19+CD38lowIgD+, B reguladoras (Bregs) CD19+CD24hiCD38hi, senescentes CD8+CD28- CD57+ e exaustas PD1+ foram quantificadas por citometria de fluxo. O TCR foi sequenciado por sequenciamento de nova geração e o perfil de citocinas séricas inflamatórias e pró- fibróticas foi avaliado por CBA-Flex e ELISA. Observamos que os valores de sjTREC e bTREC diminuíram aos 6 meses pós-TACTH, retornando a valores basais aos 12 meses, correlacionando com o número de RET e promovendo maior diversidade do TCR. Não houve mudança na taxa de divisão de timócitos. A contagem de Tregs aumentou aos 12 meses pósTACTH, correlacionando com valores de sjTREC e apresentando maior expressão de GITR e CTLA-4. A partir dos 12 meses, até o final do acompanhamento, os valores de sjKREC aumentaram, enquanto que os de Cj permaneceram estáveis, correlacionando com aumento da contagem de células B naïve e Bm2, e resultando em uma menor taxa de divisão de células B. Houve aumento de Bregs de 6 meses a um ano após o TACTH, cujos níveis correlacionaramse com aqueles de sjKREC, e apresentando maior produção de IL-10 mediante estímulo com CPG±CD40L do que antes do transplante. O comprimento telomérico diminuiu aos 6 meses pós-TACTH e correlacionou-se com níveis elevados de células senescentes que expressavam FoxP3, aliado a um aumento de expressão de PD1 pelas células T e redução dos níveis séricos de IL-6, IL-1b e proteína C reativa. Seis pacientes recaíram após o transplante, apresentando menor expressão de FoxP3, GITR e CTLA-4 pelas Tregs, diminuição da contagem de Breg e da diversidade do TCR. Adicionalmente, a remissão clínica foi associada a maior expressão de PD1 por células T e B e baixos níveis séricos de TGF-b, IL-6, IL-1b, IL-17A, MIP-1a, GCSF e IL-12. Portanto, o aumento de células T e B reguladoras geradas de novo pós-TACTH, associado à renovação do repertório de células T, alta expressão de PD1 e baixos níveis séricos de mediadores inflamatórios e prófibróticos, estão relacionadas com a resposta clínica dos pacientes com ES ao transplante.Autologous hematopoietic stem cell transplantation (AHSCT) is more effective for patients with severe systemic sclerosis (SSc) than conventional immunosuppression (IS). However, the immunological mechanisms associated with the therapeutic efficacy of AHSCT are not fully elucidated. Peripheral blood mononuclear cells and serum/plasma were collected from 31 SSc patients before and semiannually, until 36 months post-transplant, and from 16 nontransplanted SSc patients treated with IS. Thymic function was measured by RT-qPCR quantification of ?- and signal joint (sj)-T-cell receptor excision circles (sjTREC) and intrathymic T-cell division (n) was calculated by the formula: n=LOG(sjTREC/?TREC)/LOG2. Bcell replication history and bone marrow function were assessed by coding-joint (Cj) and sjkappa-deleting recombination excision circles (sjKREC). B-cell divisions in the peripheral blood (N) were calculated by the formula: N=LOG(Cj/sjKREC)/LOG2. CD3+CD4+CD31+CD45RA+ recent thymic emigrants (RTE), CD4+CD25hiFoxP3+ (GITR+/CTLA-4+) regulatory T-cells (Tregs), CD19+CD27-IgD+ naïve B-cells, CD19+CD38lowIgD+ Bm2 B-cells, CD19+CD24hiCD38hi regulatory B-cells (Bregs), CD8+CD28-CD57+ senescent cells and PD1+ exhausted cells were quantified by FACS (fluorescence-activated cell sorting). The T-cell receptor (TCR) was sequenced by New Generation Sequencing and the profile of inflammatory and pro-fibrotic serum cytokines was evaluated by CBA-Flex (cytometric bead-array) and ELISA (enzyme-linked immunosorbent assay). sjTREC and ?TREC values decreased at 6 months post-AHSCT, returning to pretransplant values at 12 months, correlating with RTE counts and associated with higher diversity of the TCR. There was no change in thymocyte division rates. At 12 months postAHSCT, Treg counts increased and correlated with sjTREC values, presenting increased expression of GITR and CTLA-4 when compared to pre-transplant levels. From 12 months until the end of follow-up, sjKREC values increased, while those of Cj remained stable, correlating with increased counts of naïve and Bm2 B-cells, resulting in reduced rate of B-cell division. There was an increase of Breg frequency from 6-months until one-year after AHSCT, correlating with sjKREC values and presenting higher IL-10 production after stimulation with CPG±CD40L than before transplantation. Telomere length decreased at 6 months post-transplant and correlated with elevated levels of FoxP3-expressing senescent cells, together with increased expression of PD1 by T-cells and reduced serum IL-6, IL-1b and C-reactive protein levels. Six patients relapsed after transplantation, presenting lower expression of FoxP3, GITR, CTLA-4 by Tregs, decreased Breg counts and reduced TCR diversity. In addition, clinical remission was associated with increased PD1 expression by T and B cells and low serum levels of TGF-?, IL-6, IL-1, IL-17A, MIP-1, G-CSF and IL-12. Therefore, newly-generated regulatory T and B cells after AHSCT, associated with T-cell repertoire renewal, high PD1 expression and low serum levels of inflammatory and profibrotic mediators associate with clinical outcomes of SSc patients after AHSCT

    Evaluation of immunological mechanisms associated with autologous hematopoietic stem cell transplantation in systemic sclerosis patients

    No full text
    O transplante autólogo de células-tronco hematopoéticas (TACTH) tem se mostrado mais eficaz como tratamento das formas graves da esclerose sistêmica (ES) do que a imunossupressão convencional (IS), porém os mecanismos imunológicos envolvidos com a resposta terapêutica não estão completamente elucidados. Células mononucleares do sangue periférico e soro/plasma foram coletados de 31 pacientes com ES antes e semestralmente, até 36 meses pós-transplante, e de 16 pacientes com ES não-transplantados tratados com IS. A função tímica foi avaliada por RT-qPCR dos valores de b- e signal joint (sj)-T-cell receptor excision circles (TREC), sendo a taxa de proliferação intratímica (n) calculada pela fórmula: n=LOG(sjTREC/bTREC)/LOG2. A história replicativa das células B e a função medular foram quantificadas pelos valores de coding-joint (Cj) e sj-kappa-deleting recombination excision circles (sjKREC) e a taxa de proliferação das células B no sangue periférico (N) foi calculada pela fórmula: N=LOG(Cj/sjKREC)/LOG2. O comprimento telomérico foi avaliado por RT-qPCR e estimado pela razão T/S (Telomere repeat copy number/Single-copy gene copy number). As células recém-emigradas do timo (RET) CD3+CD4+CD31+CD45RA+, T reguladoras (Tregs) CD4+CD25hiFoxP3+(GITR+/CTLA-4+), naïve CD19+CD27-IgD+, Bm2 CD19+CD38lowIgD+, B reguladoras (Bregs) CD19+CD24hiCD38hi, senescentes CD8+CD28- CD57+ e exaustas PD1+ foram quantificadas por citometria de fluxo. O TCR foi sequenciado por sequenciamento de nova geração e o perfil de citocinas séricas inflamatórias e pró- fibróticas foi avaliado por CBA-Flex e ELISA. Observamos que os valores de sjTREC e bTREC diminuíram aos 6 meses pós-TACTH, retornando a valores basais aos 12 meses, correlacionando com o número de RET e promovendo maior diversidade do TCR. Não houve mudança na taxa de divisão de timócitos. A contagem de Tregs aumentou aos 12 meses pósTACTH, correlacionando com valores de sjTREC e apresentando maior expressão de GITR e CTLA-4. A partir dos 12 meses, até o final do acompanhamento, os valores de sjKREC aumentaram, enquanto que os de Cj permaneceram estáveis, correlacionando com aumento da contagem de células B naïve e Bm2, e resultando em uma menor taxa de divisão de células B. Houve aumento de Bregs de 6 meses a um ano após o TACTH, cujos níveis correlacionaramse com aqueles de sjKREC, e apresentando maior produção de IL-10 mediante estímulo com CPG±CD40L do que antes do transplante. O comprimento telomérico diminuiu aos 6 meses pós-TACTH e correlacionou-se com níveis elevados de células senescentes que expressavam FoxP3, aliado a um aumento de expressão de PD1 pelas células T e redução dos níveis séricos de IL-6, IL-1b e proteína C reativa. Seis pacientes recaíram após o transplante, apresentando menor expressão de FoxP3, GITR e CTLA-4 pelas Tregs, diminuição da contagem de Breg e da diversidade do TCR. Adicionalmente, a remissão clínica foi associada a maior expressão de PD1 por células T e B e baixos níveis séricos de TGF-b, IL-6, IL-1b, IL-17A, MIP-1a, GCSF e IL-12. Portanto, o aumento de células T e B reguladoras geradas de novo pós-TACTH, associado à renovação do repertório de células T, alta expressão de PD1 e baixos níveis séricos de mediadores inflamatórios e prófibróticos, estão relacionadas com a resposta clínica dos pacientes com ES ao transplante.Autologous hematopoietic stem cell transplantation (AHSCT) is more effective for patients with severe systemic sclerosis (SSc) than conventional immunosuppression (IS). However, the immunological mechanisms associated with the therapeutic efficacy of AHSCT are not fully elucidated. Peripheral blood mononuclear cells and serum/plasma were collected from 31 SSc patients before and semiannually, until 36 months post-transplant, and from 16 nontransplanted SSc patients treated with IS. Thymic function was measured by RT-qPCR quantification of ?- and signal joint (sj)-T-cell receptor excision circles (sjTREC) and intrathymic T-cell division (n) was calculated by the formula: n=LOG(sjTREC/?TREC)/LOG2. Bcell replication history and bone marrow function were assessed by coding-joint (Cj) and sjkappa-deleting recombination excision circles (sjKREC). B-cell divisions in the peripheral blood (N) were calculated by the formula: N=LOG(Cj/sjKREC)/LOG2. CD3+CD4+CD31+CD45RA+ recent thymic emigrants (RTE), CD4+CD25hiFoxP3+ (GITR+/CTLA-4+) regulatory T-cells (Tregs), CD19+CD27-IgD+ naïve B-cells, CD19+CD38lowIgD+ Bm2 B-cells, CD19+CD24hiCD38hi regulatory B-cells (Bregs), CD8+CD28-CD57+ senescent cells and PD1+ exhausted cells were quantified by FACS (fluorescence-activated cell sorting). The T-cell receptor (TCR) was sequenced by New Generation Sequencing and the profile of inflammatory and pro-fibrotic serum cytokines was evaluated by CBA-Flex (cytometric bead-array) and ELISA (enzyme-linked immunosorbent assay). sjTREC and ?TREC values decreased at 6 months post-AHSCT, returning to pretransplant values at 12 months, correlating with RTE counts and associated with higher diversity of the TCR. There was no change in thymocyte division rates. At 12 months postAHSCT, Treg counts increased and correlated with sjTREC values, presenting increased expression of GITR and CTLA-4 when compared to pre-transplant levels. From 12 months until the end of follow-up, sjKREC values increased, while those of Cj remained stable, correlating with increased counts of naïve and Bm2 B-cells, resulting in reduced rate of B-cell division. There was an increase of Breg frequency from 6-months until one-year after AHSCT, correlating with sjKREC values and presenting higher IL-10 production after stimulation with CPG±CD40L than before transplantation. Telomere length decreased at 6 months post-transplant and correlated with elevated levels of FoxP3-expressing senescent cells, together with increased expression of PD1 by T-cells and reduced serum IL-6, IL-1b and C-reactive protein levels. Six patients relapsed after transplantation, presenting lower expression of FoxP3, GITR, CTLA-4 by Tregs, decreased Breg counts and reduced TCR diversity. In addition, clinical remission was associated with increased PD1 expression by T and B cells and low serum levels of TGF-?, IL-6, IL-1, IL-17A, MIP-1, G-CSF and IL-12. Therefore, newly-generated regulatory T and B cells after AHSCT, associated with T-cell repertoire renewal, high PD1 expression and low serum levels of inflammatory and profibrotic mediators associate with clinical outcomes of SSc patients after AHSCT

    Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients

    No full text
    ZANETTE, Dalila Lucíola. “Documento produzido em parceria ou por autor vinculado à Fiocruz, mas não consta à informação no documento”.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2018-03-06T14:11:20Z No. of bitstreams: 1 Arruda LCM Zanette Autologous hematopoietic SCT normalizes ....pdf: 1438364 bytes, checksum: 9fa9c65138e2a3109c7b1fa8615f21b0 (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2018-03-06T15:34:01Z (GMT) No. of bitstreams: 1 Arruda LCM Zanette Autologous hematopoietic SCT normalizes ....pdf: 1438364 bytes, checksum: 9fa9c65138e2a3109c7b1fa8615f21b0 (MD5)Made available in DSpace on 2018-03-06T15:34:01Z (GMT). No. of bitstreams: 1 Arruda LCM Zanette Autologous hematopoietic SCT normalizes ....pdf: 1438364 bytes, checksum: 9fa9c65138e2a3109c7b1fa8615f21b0 (MD5) Previous issue date: 2015CNPq and FAPESPUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Biochemistry and Immunology. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / Faculty of Medicine. Imperial College London. Division of Brain Sciences. London, UKUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Division of Hematology. São Paulo, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Hospital das Clínicas. Department of Neuroscience and Behavioral Science. São Paulo, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Hospital das Clínicas. Department of Neuroscience and Behavioral Science. São Paulo, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Biochemistry and Immunology. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Internal Medicine. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Biochemistry and Immunology. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Internal Medicine. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Biochemistry and Immunology. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Internal Medicine. Ribeirão Preto, SP, BrazilUniversity of São Paulo. Ribeirão Preto Medical School. Regional Blood Center of Ribeirão Preto. Center for Cell-based Therapy. Ribeirão Preto, SP, Brazil / University of São Paulo. Ribeirão Preto Medical School. Department of Biochemistry and Immunology. Ribeirão Preto, SP, Brazil / University of São Paulo. School of Pharmaceutical Sciences of Ribeirão Preto. Department of Clinical, Toxicological and Bromatological Analyses. Ribeirão Preto, SP, BrazilAutologous hematopoietic SCT (AHSCT) has been investigated in the past as a therapeutic alternative for multiple sclerosis (MS). Despite advances in clinical management, knowledge about mechanisms involved with clinical remission post transplantation is still limited. Abnormal microRNA and gene expression patterns were described in MS and have been suggested as disease biomarkers and potential therapeutic targets. Here we assessed T- and B-cell reconstitution, microRNAs and immunoregulatory gene expression after AHSCT. Early immune reconstitution was mainly driven by peripheral homeostatic proliferation. AHSCT increased CD4(+)CD25(hi)FoxP3(+) regulatory T-cell counts and expression of CTLA-4 and GITR (glucocorticoid-induced TNFR) on CD4(+)CD25(hi) T cells. We found transient increase in exhausted PD-1(+) T cells and of suppressive CD8(+)CD28(-)CD57(+) T cells. At baseline, CD4(+) and CD8(+) T cells from MS patients presented upregulated miR-16, miR-155 and miR-142-3p and downregulated FOXP3, FOXO1, PDCD1 and IRF2BP2. After transplantation, the expression of FOXP3, FOXO1, PDCD1 and IRF2BP2 increased, reaching control levels at 2 years. Expression of miR-16, miR-155 and miR-142-3p decreased towards normal levels at 6 months post therapy, remaining downregulated until the end of follow-up. These data strongly suggest that AHSCT normalizes microRNA and gene expression, thereby improving the immunoregulatory network. These mechanisms may be important for disease control in the early periods after AHSCT
    corecore