2 research outputs found
Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses. MTG
Hypermitotic meningiomas harbor DNA methylation subgroups with distinct biological and clinical features
Background Meningiomas, the most common primary intracranial tumors, can be separated into 3 DNA methylation groups with distinct biological drivers, clinical outcomes, and therapeutic vulnerabilities. Alternative meningioma grouping schemes using copy number variants, gene expression profiles, somatic short variants, or integrated molecular models have been proposed. These data suggest meningioma DNA methylation groups may harbor subgroups unifying contrasting theories of meningioma biology. Methods A total of 565 meningioma DNA methylation profiles from patients with comprehensive clinical follow-up at independent discovery (n = 200) or validation (n = 365) institutions were reanalyzed and classified into Merlin-intact, Immune-enriched, or Hypermitotic DNA methylation groups. RNA sequencing from the discovery (n = 200) or validation (n = 302) cohort were analyzed in the context of DNA methylation groups to identify subgroups. Biological features and clinical outcomes were analyzed across meningioma grouping schemes. Results RNA sequencing revealed differential enrichment of FOXM1 target genes across two subgroups of Hypermitotic meningiomas. Differential expression and ontology analyses showed the subgroup of Hypermitotic meningiomas without FOXM1 target gene enrichment was distinguished by gene expression programs driving macromolecular metabolism. Analysis of genetic, epigenetic, gene expression, or cellular features revealed Hypermitotic meningioma subgroups were concordant with Proliferative or Hypermetabolic meningiomas, which were previously reported alongside Merlin-intact and Immune-enriched tumors using an integrated molecular model. The addition of DNA methylation subgroups to clinical models refined the prediction of postoperative outcomes compared to the addition of DNA methylation groups. Conclusions Meningiomas can be separated into three DNA methylation groups and Hypermitotic meningiomas can be subdivided into Proliferative and Hypermetabolic subgroups, each with distinct biological and clinical features.NEUROPatholog