1,674 research outputs found

    Contains and Inside relationships within combinatorial Pyramids

    Full text link
    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps which allows to determine if one region contains the other using only local calculus.Comment: 35 page

    Hierarchy construction schemes within the Scale set framework

    Full text link
    Segmentation algorithms based on an energy minimisation framework often depend on a scale parameter which balances a fit to data and a regularising term. Irregular pyramids are defined as a stack of graphs successively reduced. Within this framework, the scale is often defined implicitly as the height in the pyramid. However, each level of an irregular pyramid can not usually be readily associated to the global optimum of an energy or a global criterion on the base level graph. This last drawback is addressed by the scale set framework designed by Guigues. The methods designed by this author allow to build a hierarchy and to design cuts within this hierarchy which globally minimise an energy. This paper studies the influence of the construction scheme of the initial hierarchy on the resulting optimal cuts. We propose one sequential and one parallel method with two variations within both. Our sequential methods provide partitions near the global optima while parallel methods require less execution times than the sequential method of Guigues even on sequential machines

    Efficient Encoding of n-D Combinatorial Pyramids

    Full text link
    International audienceCombinatorial maps define a general framework which allows to encode any subdivision of an n-D orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of objects (either shapes or partitions). Combinatorial pyramids have first been defined in 2D, then extended using n-D generalized combinatorial maps. We motivate and present here an implicit and efficient way to encode pyramids of n-D combinatorial maps
    • …
    corecore