619 research outputs found
Hereditary Cancer in Clinical Practice transfers to BioMed Central
We are proud to announce the re-launch of Hereditary Cancer in Clinical Practice (HCCP). Moving from a classical printed journal, first published in 2003, to the open access, online format of BioMed Central will allow for a quicker and much wider distribution of published articles. Further improving exposure of articles, the journal has also been accepted for indexing by PubMed, and is now on track to receive it's first Impact Factor in 2010 after being accepted for inclusion in Thomson Reuters' Science Citation Index Expanded and the Journal Citation Reports. In addition, the Editorial Board of the journal has been expanded in acknowledgement of the continuing growth of the field of clinical cancer genetics
Thank you to all our manuscript reviewers in 2015
The editors of Hereditary Cancer in Clinical Practice would like to thank all our reviewers who have contributed to the journal in 2015. Without the participation of skilful reviewers, no academic journal could succeed, and we are grateful to the committed individuals who have given their time and expertise to the peer review of manuscripts for Hereditary Cancer in Clinical Practice. We look forward to your continued support in 2016
Analysis of Germline Variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in Familial and Sporadic Renal Cell Carcinoma
BACKGROUND:The investigation of rare familial forms of kidney cancer has provided important insights into the biology of sporadic renal cell carcinoma (RCC). In particular, the identification of the von Hippel Lindau (VHL) familial cancer syndrome gene (VHL) provided the basis for the discovery that VHL is somatically inactivated in most sporadic clear cell RCC. Many cases of familial RCC do not have mutations in known RCC susceptibility genes and there is evidence that genetic modifiers may influence the risk of RCC in VHL disease patients. Hence we hypothesised that low-penetrance functional genetic variants in pathways related to the VHL protein (pVHL) function might (a) modify the phenotypic expression of VHL disease and/or (b) predispose to sporadic RCC. METHODOLOGY/PRINCIPAL FINDINGS:We tested this hypothesis for functional polymorphisms in CDH1 (rs16260), IGFBP3 (rs2854744), MMP1 (rs1799750), MMP3 (rs679620), STK15 (rs2273535) and VEGF (rs1570360). We observed that variants of MMP1 and MMP3 were significant modifiers of RCC risk (and risks of retinal angioma and cerebellar haemangioblastoma) in VHL disease patients. In addition, higher frequencies of the MMP1 rs1799750 2G allele (p = 0.017, OR 1.49, 95%CI 1.06-2.08) and the MMP1/MMP3 rs1799750/rs679620 2G/G haplotype (OR 1.45, 95%CI 1.01-2.10) were detected in sporadic RCC patients than in controls (n = 295). CONCLUSIONS/SIGNIFICANCE:These findings (a) represent the first example of genetic modifiers of RCC risk in VHL disease, (b) replicate a previous report of an association between MMP1/MMP3 variants and sporadic RCC and (c) further implicate MMP1/MMP3-related pathways in the pathogenesis of familial and sporadic RCC
The Association of the COMT V158M Polymorphism with Endometrial/Ovarian Cancer in HNPCC Families Adhering to the Amsterdam Criteria
Catechol-O-methyltransferase (COMT) is vital for the conjugation of catechol estrogens that are produced during oestrogen metabolism. The efficiency of this process varies due to a polymorphism in COMT, which changes valine to methionine (V158M). The Met genotypes slow the metabolism of catechol oestrogens, which are agents that are capable of causing DNA damage through the formation of DNA adducts and reactive oxygen species (ROS) production. The slower metabolism of catechol oestrogens results in there being a higher circulating concentration of these oeastrogens and consequently greater probability of DNA damage. To determine whether metabolic inefficiencies of oeastrogen metabolism are associated with the development of malignancy in hereditary non-polyposis colorectal cancer (HNPCC), we studied the V158M polymorphism in COMT in a large cohort of 498 HNPCC patients from Australia and Poland that were either mutation positive (n = 331) or negative (n = 167) for mismatch repair (MMR) gene mutations (hMLH1 or hMSH2). HNPCC is a familial predisposition to colorectal cancer (CRC) and extracolonic cancers that include endometrial cancer
Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC
Whole exome sequencing identifies APCDD1 and HDAC5 genes as potentially cancer predisposing in familial colorectal cancer
Germline mutations in predisposition genes account for only 20% of all familial colorectal cancers (CRC) and the remaining genetic burden may be due to rare high- to moderate-penetrance germline variants that are not explored. With the aim of identifying such potential cancer-predisposing variants, we performed whole exome sequencing on three CRC cases and three unaffected members of a Polish family and identified two novel heterozygous variants: a coding variant in APC downregulated 1 gene (APCDD1, p.R299H) and a non-coding variant in the 5' untranslated region (UTR) of histone deacetylase 5 gene (HDAC5). Sanger sequencing confirmed the variants segregating with the disease and Taqman assays revealed 8 additional APCDD1 variants in a cohort of 1705 familial CRC patients and no further HDAC5 variants. Proliferation assays indicated an insignificant proliferative impact for the APCDD1 variant. Luciferase reporter assays using the HDAC5 variant resulted in an enhanced promoter activity. Targeting of transcription factor binding sites of SNAI-2 and TCF4 interrupted by the HDAC5 variant showed a significant impact of TCF4 on promoter activity of mutated HDAC5. Our findings contribute not only to the identification of unrecognized genetic causes of familial CRC but also underline the importance of 5'UTR variants affecting transcriptional regulation and the pathogenesis of complex disorders.This article is based upon work from COST Action CA17118, supported by COST (European Cooperation in Science and Technology) and Transcan ERA-NET funding from the German Federal
Ministry of Education and Research (BMBF). K.H. was supported from the EU Horizon 2020 program,
grant No. 856620
- …