124 research outputs found

    Rethinking Resource Allocation in Science

    Full text link
    US funding agencies alone distribute a yearly total of roughly $65B dollars largely through the process of proposal peer review: scientists compete for project funding by submitting grant proposals which are evaluated by selected panels of peer reviewers. Similar funding systems are in place in most advanced democracies. However, in spite of its venerable history, proposal peer review is increasingly struggling to deal with the increasing mismatch between demand and supply of research funding.Comment: This working paper formed the basis of J. Bollen, Who would you share your funding with. Nature 560, 143 (2018

    Designing a solution to enable agency-academic scientific collaboration for disasters

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Society 22 (2017): 18, doi:10.5751/ES-09246-220218.As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.The authors thank the David and Lucile Packard Foundation for a grant to undertake this project and enable participation of a wide range of participants and interviewees. We thank the Center for Ocean Solutions and ChangeLabs for their oversight and support

    Biological Effects Within No-Take Marine Reserves: A global Synthesis

    Get PDF
    The study and implementation of no-take marine reserves have increased rapidly over the past decade, providing ample data on the biological effects of reserve protection for a wide range of geographic locations and organisms. The plethora of new studies affords the opportunity to reevaluate previous findings and address formerly unanswered questions with extensive data syntheses. Our results show, on average, positive effects of reserve protection on the biomass, numerical density, species richness, and size of organisms within their boundaries which are remarkably similar to those of past syntheses despite a near doubling of data. New analyses indicate that (1) these results do not appear to be an artifact of reserves being sited in better locations; (2) results do not appear to be driven by displaced fishing effort outside of reserves; (3) contrary to often-made assertions, reserves have similar if not greater positive effects in temperate settings, at least for reef ecosystems; (4) even small reserves can produce significant biological responses irrespective of latitude, although more data are needed to test whether reserve effects scale with reserve size; and (5) effects of reserves vary for different taxonomic groups and for taxa with various characteristics, and not all species increase in response to reserve protection. There is considerable variation in the responses documented across all the reserves in our data set—variability which cannot be entirely explained by which species were studied. We suggest that reserve characteristics and context, particularly the intensity of fishing outside the reserve and inside the reserve before implementation, play key roles in determining the direction and magnitude of the reserve response. However, despite considerable variability, positive responses are far more common than no differences or negative responses, validating the potential for well designed and enforced reserves to serve as globally important conservation and management tools

    Environmental and Resource Economics: Some Recent Developments by

    Get PDF
    A first draft of this paper was prepared when the authors were visiting the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, during April-May 2004. The current version was completed in Colombo, Sri Lanka, in June 2004, while the authors were attending the bi-annual teaching and research workshop of the South Asian Network for Development and Environmental Economics (SANDEE). We are most grateful to K. Sreenivasan (Director of ICTP), and Manik Duggar and Priya Shyamsundar (respectively, Programme Manager and Director of SANDEE), for making our visits both possible and most agreeable. Over the years, we have benefited greatly from discussions with Scott Barrett, William Brock, Stev
    • …
    corecore