20 research outputs found

    A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L.

    Get PDF
    Tachykinin-related peptides (TRPs) are important neuropeptides. Here we show that they affect the insect immune system, especially the cellular response. We also identify and predict the sequence and structure of the tachykinin-related peptide receptor (TRPR) and confirm the presence of expression of gene encoding TRPR on Tenebrio molitor haemocytes. After application of the Tenmo-TRP-7 in T. molitor the number of circulating haemocytes increased and the number of haemocytes participating in phagocytosis of latex beads decreased in a dose- and time-dependent fashion. Also, Tenmo-TRP-7 affects the adhesion ability of haemocytes. Six hours after injection of TenmoTRP-7, a decrease of haemocyte surface area was observed under both tested Tenmo-TRP-7 concentrations (10-7 and 10-5 M). The opposite effect was reported 24 h after injection, which indicates that the influence of Tenmo-TRP-7 on modulation of haemocyte behaviour differs at different stages of stress response. Tenmo-TRP-7 application also resulted in increased phenoloxidase activity 6 and 24 h after injection. The assessment of DNA integrity of haemocytes showed that the injection of Tenmo-TRP-7 at 10-7 M led to a decrease in DNA damage compared to control individuals. This effect was only visible 6 h after Tenmo-TRP-7 application. After 24 h, Tenmo-TRP-7 injection increased DNA damage. We also confirmed the expression of immune-related genes in nervous tissue of T. molitor. Transcripts for genes encoding receptors participating in pathogen recognition processes and antimicrobial peptides were detected in T. molitor brain, retrocerebral complex and ventral nerve cord. These results may indicate a role of the insect nervous system in pathogen recognition and modulation of immune response similar to vertebrates. Taken together, our results support the notion that tachykinin-related peptides probably play an important role in the regulation of the insect immune system. Moreover, some resemblances with action of tachykininrelated peptides and substance P showed that insects can be potential model organisms for analysis of hormonal regulation of conserved innate immune mechanisms

    The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin on the Human Erythrocytes Ghosts: A Preliminary Study

    No full text
    Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost’s proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin’s properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis
    corecore