421 research outputs found

    Perturbative calculation of quasi-normal modes of Schwarzschild black holes

    Get PDF
    We discuss a systematic method of analytically calculating the asymptotic form of quasi-normal frequencies of a four-dimensional Schwarzschild black hole by expanding around the zeroth-order approximation to the wave equation proposed by Motl and Neitzke. We obtain an explicit expression for the first-order correction and arbitrary spin. Our results are in agreement with the results from WKB and numerical analyses in the case of gravitational waves.Comment: 11 pages; references added and a sign error corrected; to appear in CQ

    Globalisation, internationalisation, Europeanisation and higher education

    Get PDF

    Symmetry of massive Rarita-Schwinger fields

    Full text link
    We derive the general lagrangian and propagator for a vector-spinor field in dd-dimensions and show that the physical observables are invariant under the so-called point transformation symmetry. Until now the symmetry has not been exploited in any non-trival way, presumably because it is not an invariance of the classical action nor is it a gauge symmetry. Nevertheless, we develop a technique for exploring the consequences of the symmetry leading to a conserved vector current and charge. The current and charge are identically zero in the free field case and only contribute in a background such as a electromagnetic or gravitational field. The current can couple spin-3/2 fields to vector and scalar fields and may have important consequences in intermediate energy hadron physics as well as linearized supergravity. The consistency problem which plagues higher spin field theories is then discussed and and some ideas regarding the possiblity of solutions are presented.Comment: 26 pages, 1 figure; revised using referee comments, Journal ref. adde

    Approximating RR Lyrae light curves using cubic polynomials

    Full text link
    In this paper, we use cubic polynomials to approximate RR Lyrae light curves and apply the method to HST data of RR Lyraes in the halo of M31. We compare our method to the standard method of Fourier decomposition and find that the method of cubic polynomials eliminates virtually all ringing effects and does so with significantly fewer parameters than the Fourier technique. Further, for RRc stars the parameters in the fit are all physical. Our study also reveals a number of additional periodicites in this data not found previously: we find 23 RRc stars, 29 RRab stars and 3 multiperiodic stars.Comment: 6 pages, MNRAS accepte

    CORS Baade-Wesselink method in the Walraven photometric system: the period-radius and the period-luminosity relation of classical Cepheids

    Get PDF
    We present a new derivation of the CORS Baade-Wesselink method in the Walraven photometric system. We solved the complete Baade-Wesselink equation by calibrating the surface brightness function with a recent grid of atmosphere models. The new approach was adopted to estimate the mean radii of a sample of Galactic Cepheids for which are available precise light curves in the Walraven bands. Current radii agree, within the errors, quite well with Cepheid radii based on recent optical and near-infrared interferometric measurements. We also tested the impact of the projection factor on the Period-Radius relation using two different values (p=1.36, p=1.27) that bracket the estimates available in the literature. We found that the agreement of our Period-Radius relation with similar empirical and theoretical Period-Radius relations in the recent literature, improves by changing the projection factor from p=1.36 to p=1.27. Our Period-Radius relation is log(R)=(0.75\pm 0.03)log(P)+(1.10 \pm 0.03), with a rms=0.03 dex. Thanks to accurate estimates of the effective temperature of the selected Cepheids, we also derived the Period-Luminosity relation in the V band and we found Mv=(-2.78 \pm 0.11)log(P)+(-1.42 \pm 0.11) with rms=0.13 mag, for p=1.27. It agrees quite well with recent results in the literature, while the relation for p=1.36 deviates by more than 2sigma. We conclude that, even taking into account the intrinsic dispersion of the obtained Period-Luminosity relations, that is roughly of the same order of magnitude as the effect of the projection factor, the results of this paper seem to favour the value p = 1.27.Comment: 17 pages, 14 figures, accepted for publication in MNRA

    Variability of Active Galactic Nuclei from the Optical to X-ray Regions

    Full text link
    Some progress in understanding AGN variability is reviewed. Reprocessing of X-ray radiation to produce significant amounts of longer-wavelength continua seems to be ruled out. In some objects where there has been correlated X-ray and optical variability, the amplitude of the optical variability has exceeded the amplitude of X-ray variability. We suggest that accelerated particles striking material could be linking X-ray and optical variability (as in activity in the solar chromosphere). Beaming effects could be significant in all types of AGN. The diversity in optical/X-ray relationships at different times in the same object, and between different objects, might be explained by changes in geometry and directions of motion relative to our line of sight. Linear shot-noise models of the variability are ruled out; instead there must be large-scale organization of variability. Variability occurs on light-crossing timescales rather than viscous timescales and this probably rules out the standard Shakura-Sunyaev accretion disk. Radio-loud and radio-quiet AGNs have similar continuum shapes and similar variability properties. This suggests similar continuum origins and variability mechanisms. Despite their extreme X-ray variability, narrow-line Seyfert 1s (NLS1s) do not show extreme optical variability.Comment: Invited talk given at Euro Asian Astronomical Society meeting in Moscow, June 2002. 20 pages, 4 figures. References update

    Carbon-rich RR Lyr type stars

    Full text link
    We have derived CNO abundances in 12 RR Lyrae stars. Four stars show [C/Fe] near 0.0 and two stars show [C/Fe] = 0.52 and 0.65. Red giant branch stars, which are known to be the predecessors of RR Lyrae stars, generally show a deficiency of carbon due to proton captures during their evolution from the main sequence up the giant branch. We suggest that the enhancement of carbon is due to production during the helium flash combined with mixing to the surface by vigorous convection induced by the flash itself.Comment: accepted for publication in ApJ

    A multi-color and Fourier study of RR Lyrae variables in the globular cluster NGC 5272 (M3)

    Get PDF
    We have performed a detailed study of the pulsational and evolutionary characteristics of 133 RR Lyrae stars in the globular cluster NGC5272 (M3) using highly accurate BVI data taken on 5 separate epochs. M3 seems to contain no less than ~32% of Blazhko stars, and the occurrence and characteristics of the Blazhko effect have been analyzed in detail. We have identified a good number (~ 14%) of overluminous RR Lyrae stars that are likely in a more advanced evolutionary stage off the Zero Age Horizontal Branch (ZAHB). Physical parameters (i.e. temperature, luminosity, mass) have been derived from (B--V) colors and accurate color-temperature calibration, and compared with Horizontal Branch evolutionary models and with the requirements of stellar pulsation theory. Additional analysis by means of Fourier decomposition of the V light curves confirms, as expected, that no metallicity spread is present in M3. Evolution off the ZAHB does not affect [Fe/H] determinations, whereas Blazhko stars at low amplitude phase do affect [Fe/H] distributions as they appear more metal-rich. Absolute magnitudes derived from Fourier coefficients might provide useful average estimates for groups of stars, if applicable, but do not give reliable {\em individual} values. Intrinsic colors derived from Fourier coefficients show significant discrepancies with the observed ones, hence the resulting temperatures and temperature-related parameters are unreliable.Comment: 86 pages, 19 figures, 13 tables, in press A
    corecore