2,862 research outputs found
Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments
We show that the standard Dirac phase factor is not the only solution of the
gauge transformation equations. The full form of a general gauge function (that
connects systems that move in different sets of scalar and vector potentials),
apart from Dirac phases also contains terms of classical fields that act
nonlocally (in spacetime) on the local solutions of the time-dependent
Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger
picture are affected nonlocally by spatially and temporally remote magnetic and
electric fields, in ways that are fully explored. These contributions go beyond
the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to
cases of particles passing through static magnetic or electric fields leads to
cancellations of Aharonov-Bohm phases at the observation point; these are
linked to behaviors at the semiclassical level (to the old Werner & Brill
experimental observations, or their "electric analogs" - or to recent reports
of Batelaan & Tonomura) but are shown to be far more general (true not only for
narrow wavepackets but also for completely delocalized quantum states). By
using these cancellations, certain previously unnoticed sign-errors in the
literature are corrected. (ii) Application to time-dependent situations
provides a remedy for erroneous results in the literature (on improper uses of
Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and
a field-nonlocal part: their competition is shown to recover Relativistic
Causality in earlier "paradoxes" (such as the van Kampen thought-experiment),
while a more general consideration indicates that the temporal nonlocalities
found here demonstrate in part a causal propagation of phases of quantum
mechanical wavefunctions in the Schr\"odinger picture. This may open a direct
way to address time-dependent double-slit experiments and the associated causal
issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the
Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and
Bristol), published in Journ. Phys. A. Compared to the published paper, this
version has 17 additional lines after eqn.(14) for maximum clarity, and the
Abstract has been slightly modified and reduced from the published 2035
characters to the required 1920 character
Influences of source displacement on the features of subwavelength imaging of a photonic crystal slab
In this paper we study the characteristics of subwavelength imaging of a
photonic crystal (PhC) superlens under the influence of source displacement.
For square- and triangular-lattice photonic crystal lenses, we investigate the
influence of changing the lateral position of a single point source on the
imaging uniformity and stability. We also study the effect of changing the
geometrical center of a pair of sources on the resolution of the double-image.
Both properties are found to be sensitive to the displacement, which implies
that a PhC slab cannot be treated seriously as a flat lens. We also show that
by introducing material absorption into the dielectric cylinders of the PhC
slab and widening the lateral width of the slab, the imaging uniformity and
stability can be substantially improved. This study helps us to clarify the
underlying mechanisms of some recently found phenomena concerning imaging
instability.Comment: 6 pages, 4 figures. To appear in J. Phys. Cond. Mat
Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers
Molecular dynamics simulations are used to study contact between a rigid,
nonadhesive, spherical tip with radius of order 30nm and a flat elastic
substrate covered with a fluid monolayer of adsorbed chain molecules. Previous
studies of bare surfaces showed that the atomic scale deviations from a sphere
that are present on any tip constructed from discrete atoms lead to significant
deviations from continuum theory and dramatic variability in friction forces.
Introducing an adsorbed monolayer leads to larger deviations from continuum
theory, but decreases the variations between tips with different atomic
structure. Although the film is fluid, it remains in the contact and behaves
qualitatively like a thin elastic coating except for certain tips at high
loads. Measures of the contact area based on the moments or outer limits of the
pressure distribution and on counting contacting atoms are compared. The number
of tip atoms making contact in a time interval grows as a power of the interval
when the film is present and logarithmically with the interval for bare
surfaces. Friction is measured by displacing the tip at a constant velocity or
pulling the tip with a spring. Both static and kinetic friction rise linearly
with load at small loads. Transitions in the state of the film lead to
nonlinear behavior at large loads. The friction is less clearly correlated with
contact area than load.Comment: RevTex4, 17 pages, 13 figure
R-matrix Floquet theory for laser-assisted electron-atom scattering
A new version of the R-matrix Floquet theory for laser-assisted electron-atom
scattering is presented. The theory is non-perturbative and applicable to a
non-relativistic many-electron atom or ion in a homogeneous linearly polarized
field. It is based on the use of channel functions built from field-dressed
target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.
Quantitative nanoscale vortex-imaging using a cryogenic quantum magnetometer
Microscopic studies of superconductors and their vortices play a pivotal role
in our understanding of the mechanisms underlying superconductivity. Local
measurements of penetration depths or magnetic stray-fields enable access to
fundamental aspects of superconductors such as nanoscale variations of
superfluid densities or the symmetry of their order parameter. However,
experimental tools, which offer quantitative, nanoscale magnetometry and
operate over the large range of temperature and magnetic fields relevant to
address many outstanding questions in superconductivity, are still missing.
Here, we demonstrate quantitative, nanoscale magnetic imaging of Pearl vortices
in the cuprate superconductor YBCO, using a scanning quantum sensor in form of
a single Nitrogen-Vacancy (NV) electronic spin in diamond. The sensor-to-sample
distance of ~10nm we achieve allows us to observe striking deviations from the
prevalent monopole approximation in our vortex stray-field images, while we
find excellent quantitative agreement with Pearl's analytic model. Our
experiments yield a non-invasive and unambiguous determination of the system's
local London penetration depth, and are readily extended to higher temperatures
and magnetic fields. These results demonstrate the potential of quantitative
quantum sensors in benchmarking microscopic models of complex electronic
systems and open the door for further exploration of strongly correlated
electron physics using scanning NV magnetometry.Comment: Main text (5 pages, 4 figures) plus supplementary material (5 pages,
6 figures). Comments welcome. Further information under
http://www.quantum-sensing.c
Practical Evaluation of Lempel-Ziv-78 and Lempel-Ziv-Welch Tries
We present the first thorough practical study of the Lempel-Ziv-78 and the
Lempel-Ziv-Welch computation based on trie data structures. With a careful
selection of trie representations we can beat well-tuned popular trie data
structures like Judy, m-Bonsai or Cedar
The Interaction of Α-Thalassaemia and Haemoglobin G Philadelphia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73251/1/j.1365-2141.1976.tb00918.x.pd
Transport properties of copper phthalocyanine based organic electronic devices
Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied
experimentally in field-effect transistors and metal-insulator-semiconductor
diodes at various temperatures. The electronic structure and the transport
properties of CuPc attached to leads are calculated using density functional
theory and scattering theory at the non-equilibrium Green's function level. We
discuss, in particular, the electronic structure of CuPc molecules attached to
gold chains in different geometries to mimic the different experimental setups.
The combined experimental and theoretical analysis explains the dependence of
the mobilityand the transmission coefficient on the charge carrier type
(electrons or holes) and on the contact geometry. We demonstrate the
correspondence between our experimental results on thick films and our
theoretical studies of single molecule contacts. Preliminary results for
fluorinated CuPc are discussed.Comment: 18 pages, 16 figures; to be published in Eur. Phys. J. Special Topic
Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux
The semiclassical quantization rule is derived for a system with a
spherically symmetric potential and an
Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models with . It is shown that the
results provided by our method are in good agreement with previous results. One
expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum number even the rule is
derived in the large principal quantum number limit . We also discuss
the power parameter dependence of the energy spectra pattern in this
paper.Comment: 13 pages, 4 figures, some typos correcte
- …