7 research outputs found

    Evaluation of regional patent innovation efficiency and its spatial distribution from the perspective of spatial spillover

    Get PDF
    There is considerable interest among policy-makers and academics regarding other potential arrangements to encourage the innovative activities of firms. This study aims to investigate whether R&D investments promote or impede the enhancement of patent innovation efficiency in China, and also to reveal the spatial patterns of patent innovation and its regional interdependencies and evolution, as well as its role in determining the effects of local innovation in China. The spatial autoregressive model is used to examine the effects of patent innovation efficiency. Results show that geographical proximity matters in the interregional flow of knowledge and technology; moreover, innovation in a region depends on its own R&D efforts, its innovative tradition and its e activities has demonstrated that policies enhancing ional R&D activities are probably to get a richer effectiveness on stimulating patent innovation

    Diffusion, convergence and influence of pharmaceutical innovations: a comparative study of Chinese and U.S. patents

    No full text
    Abstract Background Despite the significant impact of pharmaceutical innovations on healthcare, our understanding is still limited because previous studies explored only a few cases and largely came from a linear perspective. This study presents a detailed case of the Chinese and U.S. pharmaceutical patents and investigated advancements that the global pharmaceutical industry is experiencing. A network analysis approach was used to identify certain aspects regarding the diffusion of pharmaceutical innovations, including innovation attributes, adopter characteristics, and clustering. Methods Based on a patent database, network analysis and visualization, this study captured the structure of patent networks for the global pharmaceutical landscape in a large set of patents. A large volume of patent data, 15,422 patent filings citing Chinese pharmaceutical patents, 28,075 citing U.S. patents, and 6064 citing both Chinese and U.S. patents during 2014–2015, were retrieved from the world patent database, Derwent Innovation Index. The networks reveal many interesting features of technological innovation, convergence trends and diffusion patterns. Results Convergence innovations were identified, with the advantage and influence of U.S. patents shown in a variety of areas, and their Chinese counterparts were concentrated in traditional Chinese medicine. Early adopters of Chinese patents were mainly universities within the national sector, while early adopters of U.S. patents were academic institutions and large international pharmaceutical corporations of balanced quantity, contributing a higher degree of technology convergence. Technology convergence in the cancer-treatment sector is expected to have a high future development potential. Conclusion Chinese and U.S. pharmaceutical innovations contributed differently to the growth and development of the global pharmaceutical industry. The findings of this study can provide rich knowledge about the influence, diffusion and convergence trends of Chinese and U.S. pharmaceutical innovations. In the pharmaceutical industry, the findings may provide implications for researchers, policy makers, health professionals, and the general public to help improve the overall health of society

    Insight into the Disciplinary Structure of Nanoscience & Nanotechnology

    No full text
    Purpose: This paper aims to gain an insight into the disciplinary structure of nanoscience & nanotechnology (N&N): What is the disciplinary network of N&N like? Which disciplines are being integrated into N&N over time? For a specific discipline, how many other disciplines have direct or indirect connections with it? What are the distinct subgroups of N&N at different evolutionary stages? Such critical issues are to be addressed in this paper. Design/methodology/approach: We map the disciplinary network structure of N&N by employing the social network analysis tool, Netdraw, identifying which Web of Science Categories (WCs) mediate nbetweenness centrality in different stages of nano development. Cliques analysis embedded in the Ucinet program is applied to do the disciplinary cluster analysis in the study according to the path of “Network-Subgroup-Cliques,” and a tree diagram is selected as the visualizing type. Findings: The disciplinary network structure reveals the relationships among different disciplines in the N&N developing process clearly, and it is easy for us to identify which disciplines are connected with the core “N&N” directly or indirectly. The tree diagram showing N&N related disciplines provides an interesting perspective on nano research and development (R&D) structure. Research limitations: The matrices used to draw the N&N disciplinary network are the original ones, and normalized matrix could be tried in future similar studies. Practical implications: Results in this paper can help us better understand the disciplinary structure of N&N, and the dynamic evolution of N&N related disciplines over time. The findings could benefit R&D decision making. It can support policy makers from government agencies engaging in science and technology (S&T) management or S&T strategy planners to formulate efficient decisions according to a perspective of converging sciences and technologies. Originality/value: The novelty of this study lies in mapping the disciplinary network structure of N&N clearly, identifying which WCs have a mediating effect in different developmental stages (especially analyzing clusters among disciplines related to N&N, revealing close or distant relationships among distinct areas pertinent to N&N)
    corecore