80,662 research outputs found

    Electrospinning of poly(ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing

    Get PDF
    Copyright © 2011 Chao Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Skin wound healing is an urgent problem in clinics and military activities. Although significant advances have been made in its treatment, there are several challenges associated with traditional methods, for example, limited donor skin tissue for transplantation and inflammation during long-term healing time. To address these challenges, in this study we present a method to fabricate Poly(ethylene-co-vinyl alcohol) (EVOH) nanofibres encapsulated with Ag nanoparticle using electrospinning technique. The fibres were fabricated with controlled diameters (59nm-3m) by regulating three main parameters, that is, EVOH solution concentration, the electric voltage, and the distance between the injection needle tip (high-voltage point) and the fibre collector. Ag was added to the nanofibres to offer long-term anti-inflammation effect by slow release of Ag nanoparticles through gradual degradation of EVOH nanofibre. The method developed here could lead to new dressing materials for treatment of skin wounds. © 2011 Chao Xu et al.The work was partially supported by the National Natural Science Foundation of China (nos. 10825210, 10872157, and 31050110125) and the National 111 Project of China (no. B06024)

    Microfluidically fabricated pH-responsive anionic amphiphilic microgels for drug release

    Get PDF
    © 2016 The Royal Society of Chemistry. Amphiphilic microgels of different composition based on the hydrophilic, pH-responsive acrylic acid (AA) and the hydrophobic, non-ionic n-butyl acrylate (BuA) were synthesised using a lab-on-a-chip device. Hydrophobic droplets were generated via a microfluidic platform that contained a protected form of AA, BuA, the hydrophobic crosslinker, ethylene glycol dimethacrylate (EGDMA), and a free radical initiator in an organic solvent. These hydrophobic droplets were photopolymerised within the microfluidic channels and subsequently hydrolysed, enabling an integrated platform for the rapid, automated, and in situ production of anionic amphiphilic microgels. The amphiphilic microgels did not feature the conventional core-shell structure but were instead based on random amphiphilic copolymers of AA and BuA and hydrophobic crosslinks. Due to their amphiphilic nature they were able to encapsulate and deliver both hydrophobic and hydrophilic moieties. The model drug delivery and the swelling ability of the microgels were influenced by the pH of the surrounding aqueous solution and the hydrophobic content of the microgels

    Tailoring pH-responsive acrylic acid microgels with hydrophobic crosslinks for drug release

    Get PDF
    Amphiphilic microgels based on the hydrophilic acrylic acid (AA) and hydrophobic crosslinks of different compositions were synthesised using a lab-on-a-chip device. The microgels were formed by polymerising hydrophobic droplets. The droplets were generated via a microfluidic platform and contained a protected form of AA, a hydrophobic crosslinker (ethylene glycol dimethacrylate, EGDMA) and a free radical initiator in an organic solvent. Following photopolymerisation and subsequent hydrolysis, AA based microgels of amphiphilic nature were produced and it was demonstrated that they can successfully deliver both hydrophilic as well as hydrophobic moieties. The model drug delivery and the swelling ability of the microgels were influenced by the pH of the aqueous solution as well as the crosslinking density and hydrophobic content of the microgels

    Bulk Rotational Symmetry Breaking in Kondo Insulator SmB6

    Full text link
    Kondo insulator samarium hexaboride (SmB6) has been intensely studied in recent years as a potential candidate of a strongly correlated topological insulator. One of the most exciting phenomena observed in SmB6 is the clear quantum oscillations appearing in magnetic torque at a low temperature despite the insulating behavior in resistance. These quantum oscillations show multiple frequencies and varied effective masses. The origin of quantum oscillation is, however, still under debate with evidence of both two-dimensional Fermi surfaces and three-dimensional Fermi surfaces. Here, we carry out angle-resolved torque magnetometry measurements in a magnetic field up to 45 T and a temperature range down to 40 mK. With the magnetic field rotated in the (010) plane, the quantum oscillation frequency of the strongest oscillation branch shows a four-fold rotational symmetry. However, in the angular dependence of the amplitude of the same branch, this four-fold symmetry is broken and, instead, a twofold symmetry shows up, which is consistent with the prediction of a two-dimensional Lifshitz-Kosevich model. No deviation of Lifshitz-Kosevich behavior is observed down to 40 mK. Our results suggest the existence of multiple light-mass surface states in SmB6, with their mobility significantly depending on the surface disorder level.Comment: 15 pages, 9 figure

    Mechanical Design of the MID Split-and-Delay Line at the European XFEL

    Get PDF
    A new split-and-delay line (SDL) is under development for the Materials Imaging and Dynamics (MID) end station at the European XFEL.* The device utilises Bragg reflection to provide pairs of X-ray pulses with an energy of (5 - 10) keV and a continuously tunable time delay of (-10 - 800) ps - thus allowing zero-crossing of the time delay. The mechanical concept features separate positioning stages for each optical element. Those are based on a serial combination of coarse motion axes and a fine alignment 6 DoF Cartesian parallel kinematics**. That allows to meet the contradictory demands of a fast long-range travel of up to 1000 mm and in the same time a precise alignment with a resolution in the nanometer range. Multiple laser interferometers monitor the position of the optical elements and allow an active control of their alignment. All optical elements and mechanics will be installed inside an UHV chamber, including the interferometer and about 100 stepper motors. With this paper we present the mechanical design for the SDL. It will additionally show the design of a prototype of a positioning stage which allows extensive testing of the implemented concepts and techniques

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables
    • …
    corecore