64,094 research outputs found

    Zero sound in a two-dimensional dipolar Fermi gas

    Get PDF
    We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.Comment: 15 pages, 2 figure

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Lifshitz transitions in a heavy-Fermion liquid driven by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model

    Full text link
    The heavy-Fermion liquid with short-range antiferromagnetic correlations is carefully considered in the two-dimensional Kondo-Heisenberg lattice model. As the ratio of the local Heisenberg superexchange JHJ_{H} to the Kondo coupling JKJ_{K} increases, Lifshitz transitions are anticipated, where the topology of the Fermi surface (FS) of the heavy quasiparticles changes from a hole-like circle to four kidney-like pockets centered around (Ï€,Ï€)(\pi ,\pi). In-between these two limiting cases, a first-order quantum phase transition is identified at JH/JK=0.1055J_{H}/J_{K}=0.1055 where a small circle begins to emerge within the large deformed circle. When JH/JK=0.1425J_{H}/J_{K}=0.1425, the two deformed circles intersect each other and then decompose into four kidney-like Fermi pockets via a second-order quantum phase transition. As JH/JKJ_{H}/J_{K} increases further, the Fermi pockets are shifted along the direction (Ï€,Ï€\pi,\pi) to (Ï€/2,Ï€/2\pi/2,\pi/2), and the resulting FS is consistent with the FS obtained recently using the quantum Monte Carlo cluster approach to the Kondo lattice system in the presence of the antiferrmagnetic order.Comment: 4 pages, 5 figure

    More is Less: Perfectly Secure Oblivious Algorithms in the Multi-Server Setting

    Get PDF
    The problem of Oblivious RAM (ORAM) has traditionally been studied in a single-server setting, but more recently the multi-server setting has also been considered. Yet it is still unclear whether the multi-server setting has any inherent advantages, e.g., whether the multi-server setting can be used to achieve stronger security goals or provably better efficiency than is possible in the single-server case. In this work, we construct a perfectly secure 3-server ORAM scheme that outperforms the best known single-server scheme by a logarithmic factor. In the process, we also show, for the first time, that there exist specific algorithms for which multiple servers can overcome known lower bounds in the single-server setting.Comment: 36 pages, Accepted in Asiacrypt 201

    An accretion model for the growth of the central black hole associated with ionization instability in quasars

    Get PDF
    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy.The mass ratio between black hole and its host galactic bulge is a nature consequence of our model.Comment: submitted to ApJ, 15 page

    Correlation-hole induced paired quantum Hall states in lowest Landau level

    Full text link
    A theory is developed for the paired even-denominator fractional quantum Hall states in the lowest Landau level. We show that electrons bind to quantized vortices to form composite fermions, interacting through an exact instantaneous interaction that favors chiral p-wave pairing. Two canonically dual pairing gap functions are related by the bosonic Laughlin wavefunction (Jastraw factor) due to the correlation holes. We find that the ground state is the Moore-Read pfaffian in the long wavelength limit for weak Coulomb interactions, a new pfaffian of an oscillatory pairing function for intermediate interactions, and a Read-Rezayi composite Fermi liquid beyond a critical interaction strength. Our findings are consistent with recent experimental observations of the 1/2 and 1/4 fractional quantum Hall effects in asymmetric wide quantum wells.Comment: 4 pages, 2 figures; published versio

    Metal-insulator transition in half-filling two-orbital Hubbard model on triangular lattice

    Full text link
    We have investigated the half-filling two-orbital Hubbard model on a triangular lattice by means of the dynamical mean-field theory (DMFT). The densities of states and optical conductivity clearly show the occurence of metal-insulating transition (MIT) at Uc_{c}, Uc_{c}=18.2, 16.8, 6.12 and 5.85 for J=0, 0.01U, U/4 and U/3, respectively. The distinct continuities of double occupation of electrons, local square moments and local susceptibility of the charge, the spin and the orbital at J > 0 suggest that the MIT is the first-order; however at J=0, the MIT is the second-order in the half-filling two-orbital Hubbard model on triangular lattices. We attribute the first-order nature of the MIT to the low symmetry of the systems with finite Hund's coupling J.Comment: 5 figures,13 pages, published versio
    • …
    corecore