325 research outputs found

    Ca2+/Calmodulin-Dependent Protein Kinase Kinase Is Not Involved in Hypothalamic AMP-Activated Protein Kinase Activation by Neuroglucopenia

    Get PDF
    Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca2+/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 µmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK

    A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome.</p> <p>Results</p> <p>Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation.</p> <p>Conclusions</p> <p>In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of csRNA families are highly sensitive to heat stress. Some csRNAs respond to heat stress by silencing target genes. We suggest that proper temperature is important for production of chloroplast small RNAs, which are associated with plant resistance to abiotic stress.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Disease-Related Cardiac Troponins Alter Thin Filament Ca2+ Association and Dissociation Rates

    Get PDF
    The contractile response of the heart can be altered by disease-related protein modifications to numerous contractile proteins. By utilizing an IAANS labeled fluorescent troponin C, , we examined the effects of ten disease-related troponin modifications on the Ca2+ binding properties of the troponin complex and the reconstituted thin filament. The selected modifications are associated with a broad range of cardiac diseases: three subtypes of familial cardiomyopathies (dilated, hypertrophic and restrictive) and ischemia-reperfusion injury. Consistent with previous studies, the majority of the protein modifications had no effect on the Ca2+ binding properties of the isolated troponin complex. However, when incorporated into the thin filament, dilated cardiomyopathy mutations desensitized (up to 3.3-fold), while hypertrophic and restrictive cardiomyopathy mutations, and ischemia-induced truncation of troponin I, sensitized the thin filament to Ca2+ (up to 6.3-fold). Kinetically, the dilated cardiomyopathy mutations increased the rate of Ca2+ dissociation from the thin filament (up to 2.5-fold), while the hypertrophic and restrictive cardiomyopathy mutations, and the ischemia-induced truncation of troponin I decreased the rate (up to 2-fold). The protein modifications also increased (up to 5.4-fold) or decreased (up to 2.5-fold) the apparent rate of Ca2+ association to the thin filament. Thus, the disease-related protein modifications alter Ca2+ binding by influencing both the association and dissociation rates of thin filament Ca2+ exchange. These alterations in Ca2+ exchange kinetics influenced the response of the thin filament to artificial Ca2+ transients generated in a stopped-flow apparatus. Troponin C may act as a hub, sensing physiological and pathological stimuli to modulate the Ca2+-binding properties of the thin filament and influence the contractile performance of the heart

    Serum MicroRNAs as Biomarkers for Hepatocellular Carcinoma in Chinese Patients with Chronic Hepatitis B Virus Infection

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) have been shown to anticipate great cancer diagnostic potential. Recently, circulating miRNAs have been reported as promising biomarkers for various pathologic conditions. The objective of this study was to investigate the potential of serum miRNAs as novel biomarkers for hepatocellular carcinoma (HCC). METHODOLOGY/PRINCIPAL FINDINGS: This study was divided into four phases: (I) Ten candidate serum miRNAs were detected by using real-time RT-PCR, corresponding 10 HCC patients with chronic hepatitis B virus (HBV) infection and 10 age- and sex-matched healthy subjects. (II) Marker validation by real-time RT-PCR on HBV patients with (n = 48) or without HCC (n = 48), and healthy subjects (n = 24). (III) Marker detection by real-time RT-PCR in sera from another 14 HCC patients before and 1 month after surgical resection. (IV) We examined the correlation between the expressions of candidate serum miRNAs with clinical parameters of HCC patients. Although miR-222, miR-223 or miR-21 were significantly up- or down-regulated between HCC patients and healthy controls, no significant difference was observed in the levels of these miRNAs between HBV patients without and with HCC. MiR-122 in serum was significantly higher in HCC patients than healthy controls (p<0.001). More importantly, it was found that the levels of miR-122 were significantly reduced in the post-operative serum samples when compared to the pre-operative samples. Although serum miR-122 was also elevated in HBV patients with HCC comparing with those without HCC, the difference was at the border line (p = 0.043). CONCLUSIONS/SIGNIFICANCE: Our results suggest that serum miR-122 might serve as a novel and potential noninvasive biomarker for detection of HCC in healthy subjects, moreover, it might serve as a novel biomarker for liver injury but not specifically for detection of HCC in chronic HBV infection patients

    Differential Protein Expression in Honeybee (Apis mellifera L.) Larvae: Underlying Caste Differentiation

    Get PDF
    Honeybee (Apis mellifera) exhibits divisions in both morphology and reproduction. The queen is larger in size and fully developed sexually, while the worker bees are smaller in size and nearly infertile. To better understand the specific time and underlying molecular mechanisms of caste differentiation, the proteomic profiles of larvae intended to grow into queen and worker castes were compared at 72 and 120 hours using two dimensional electrophoresis (2-DE), network, enrichment and quantitative PCR analysis. There were significant differences in protein expression between the two larvae castes at 72 and 120 hours, suggesting the queen and the worker larvae have already decided their fate before 72 hours. Specifically, at 72 hours, queen intended larvae over-expressed transketolase, aldehyde reductase, and enolase proteins which are involved in carbohydrate metabolism and energy production, imaginal disc growth factor 4 which is a developmental related protein, long-chain-fatty-acid CoA ligase and proteasome subunit alpha type 5 which metabolize fatty and amino acids, while worker intended larvae over-expressed ATP synthase beta subunit, aldehyde dehydrogenase, thioredoxin peroxidase 1 and peroxiredoxin 2540, lethal (2) 37 and 14-3-3 protein epsilon, fatty acid binding protein, and translational controlled tumor protein. This differential protein expression between the two caste intended larvae was more pronounced at 120 hours, with particular significant differences in proteins associated with carbohydrate metabolism and energy production. Functional enrichment analysis suggests that carbohydrate metabolism and energy production and anti-oxidation proteins play major roles in the formation of caste divergence. The constructed network and validated gene expression identified target proteins for further functional study. This new finding is in contrast to the existing notion that 72 hour old larvae has bipotential and can develop into either queen or worker based on epigenetics and can help us to gain new insight into the time of departure as well as caste trajectory influencing elements at the molecular level

    A Ten-microRNA Expression Signature Predicts Survival in Glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression data of GBM patients (n = 222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated the patients into high and low risk groups with significantly different survival times (hazard ratio [HR] = 2.4; 95% CI = 1.4–3.8; p<0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was independently validated in the testing set (HR = 1.7; 95% CI = 1.1–2.8; p = 0.002). GBM patients with high risk scores had overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0% at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0% respectively in the high risk group (HR = 2.0; 95% CI = 1.4–2.8; p<0.0001). Cox multivariate analysis with patient age as a covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent predictor of patient survival (HR = 1.120; 95% CI = 1.04–1.20; p = 0.003). Thus we have identified a miRNA expression signature that can predict GBM patient survival. These findings may have implications in the understanding of gliomagenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy

    BRCA1: A Novel Prognostic Factor in Resected Non-Small-Cell Lung Cancer

    Get PDF
    BACKGROUND: Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1). METHODOLOGY AND PRINCIPAL FINDINGS: We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04). CONCLUSIONS: Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated
    corecore