45,579 research outputs found

    Using Java for plasma PIC simulations

    Get PDF
    Plasma particle-in-cell (PIC) simulations model the interactions of charged particles with the surrounding fields. This application has been recognized as one of the grand challenge problems facing the high-performance computing community due to its huge computational requirements. Recently, with the explosive development of Internet, Java is receiving increasing attention and is thought as a potential candidate for high-performance computing. In this paper, we present our approach to developing 2- and 3-dimensional parallel PIC simulations in Java. We also report the execution times for both versions from performance experiments on a symmetric multi-processor (Sun E6500) and a Linux cluster of Pentium III machines. Those results are also compared with benchmark measurements of the corresponding Fortran version of the same algorithm

    Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Full text link
    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius vs. wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), the Large Synoptic Survey telescope (LSST) and Euclid.Comment: 18 pages, 17 figures, accepted for publication in the Astrophysical Journa

    On the Bergman representative coordinates

    Full text link
    We study the set where the so-called Bergman representative coordinates (or Bergman functions) form an immersion. We provide an estimate of the size of a maximal geodesic ball with respect to the Bergman metric, contained in this set. By concrete examples we show that these estimates are the best possible.Comment: 20 page

    An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center

    Full text link
    We report the detection of 10 new X-ray filaments using the data from the {\sl Chandra} X-ray satellite for the inner 66^{\prime} (15\sim 15 parsec) around the Galactic center (GC). All these X-ray filaments are characterized by non-thermal energy spectra, and most of them have point-like features at their heads that point inward. Fitted with the simple absorbed power-law model, the measured X-ray flux from an individual filament in the 2-10 keV band is 2.8×1014\sim 2.8\times10^{-14} to 101310^{-13} ergs cm2^{-2} s1^{-1} and the absorption-corrected X-ray luminosity is 10321033\sim 10^{32}-10^{33} ergs s1^{-1} at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these filaments by morphologies and by comparing their X-ray images with the corresponding radio and infrared images. On the basis of combined information available, we suspect that these X-ray filaments might be pulsar wind nebulae (PWNe) associated with pulsars of age 1033×10510^3 \sim 3\times 10^5 yr. The fact that most of the filament tails point outward may further suggest a high velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap

    Tensor Rank Estimation and Completion via CP-based Nuclear Norm

    Get PDF
    Tensor completion (TC) is a challenging problem of recovering missing entries of a tensor from its partial observation. One main TC approach is based on CP/Tucker decomposition. However, this approach often requires the determination of a tensor rank a priori. This rank estimation problem is difficult in practice. Several Bayesian solutions have been proposed but they often under/overestimate the tensor rank while being quite slow. To address this problem of rank estimation with missing entries, we view the weight vector of the orthogonal CP decomposition of a tensor to be analogous to the vector of singular values of a matrix. Subsequently, we define a new CP-based tensor nuclear norm as the L1-norm of this weight vector. We then propose Tensor Rank Estimation based on L1-regularized orthogonal CP decomposition (TREL1) for both CP-rank and Tucker-rank. Specifically, we incorporate a regularization with CP-based tensor nuclear norm when minimizing the reconstruction error in TC to automatically determine the rank of an incomplete tensor. Experimental results on both synthetic and real data show that: 1) Given sufficient observed entries, TREL1 can estimate the true rank (both CP-rank and Tucker-rank) of incomplete tensors well; 2) The rank estimated by TREL1 can consistently improve recovery accuracy of decomposition-based TC methods; 3) TREL1 is not sensitive to its parameters in general and more efficient than existing rank estimation methods
    corecore