24,455 research outputs found

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model

    The bicrossed products of H4H_4 and H8H_8

    Full text link
    Let H4H_4 and H8H_8 be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. In this paper we prove that any Hopf algebra which factorizes through H8H_8 and H4H_4 (equivalently, any bicrossed product between the Hopf algebras H8H_8 and H4H_4) must be isomorphic to one of the following four Hopf algebras: H8H4,H32,1,H32,2,H32,3H_8 \otimes H_4, H_{32,1}, H_{32,2}, H_{32,3}. The set of all matched pair (H8,H4,,)(H_8, H_4, \triangleright, \triangleleft) is explicitly described, and then the associated bicrossed products is given by generators and relations

    Deuteron-like states composed of two doubly charmed baryons

    Full text link
    We present a systematic investigation of the possible molecular states composed of a pair of doubly charmed baryons (ΞccΞcc\Xi_{cc}\Xi_{cc}) or one doubly charmed baryon and one doubly charmed antibaryon (ΞccΞˉcc)(\Xi_{cc}\bar{\Xi}_{cc}) within the framework of the one-boson-exchange-potential model. For the spin-triplet systems, we take into account the mixing between the 3S1{}^3S_1 and 3D1{}^3D_1 channels. For the baryon-baryon system ΞccΞcc\Xi_{cc}\Xi_{cc} with (R,I)=(3ˉ,1/2)(R,I) = (\bar{3}, 1/2) and (3ˉ,0)(\bar{3}, 0), where RR and II represent the group representation and the isospin of the system, respectively, there exist loosely bound molecular states. For the baryon-antibaryon system ΞccΞˉcc\Xi_{cc}\bar{\Xi}_{cc} with (R,I)=(8,1)(R,I) = (8, 1), (8,1/2)(8, 1/2) and (8,0)(8,0), there also exist deuteron-like molecules. The BccBˉccB_{cc}\bar{B}_{cc} molecular states may be produced at LHC. The proximity of their masses to the threshold of two doubly charmed baryons provides a clean clue to identify them.Comment: 18 pages, 8 figure

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era
    corecore