2,113 research outputs found
Molecular dynamics simulation of the order-disorder phase transition in solid NaNO
We present molecular dynamics simulations of solid NaNO using pair
potentials with the rigid-ion model. The crystal potential surface is
calculated by using an \emph{a priori} method which integrates the \emph{ab
initio} calculations with the Gordon-Kim electron gas theory. This approach is
carefully examined by using different population analysis methods and comparing
the intermolecular interactions resulting from this approach with those from
the \emph{ab initio} Hartree-Fock calculations. Our numerics shows that the
ferroelectric-paraelectric phase transition in solid NaNO is triggered by
rotation of the nitrite ions around the crystallographical c axis, in agreement
with recent X-ray experiments [Gohda \textit{et al.}, Phys. Rev. B \textbf{63},
14101 (2000)]. The crystal-field effects on the nitrite ion are also addressed.
Remarkable internal charge-transfer effect is found.Comment: RevTeX 4.0, 11 figure
Hepatocellular carcinoma: updates in pathogenesis, detection and treatment
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and the second most common cause of cancer mortality worldwide [1]. The prognosis of HCC patients is very poor. The rates of HCC incidence and mortality are almost equivalent [2] and have increased across most countries over the past three decades [3]. HCC development is closely associated with the presence of chronic liver disease and cirrhosis, albeit the risk factors underlying this condition vary geographically. Hepatitis B virus (HBV) infection and aflatoxin B1 exposure are predominant risk factors in Asia and Africa, while hepatitis C virus (HCV) infection and alcohol consumption are the main risk factors in Europe, the USA and Japan [3,4,5]. Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent liver disease worldwide, and approximately 60% of biopsied NAFLD patients have non-alcoholic steatohepatitis (NASH) [3]. Importantly, patients with NASH are at high risk of developing HCC even without presenting established cirrhosis [6]. With widespread HBV vaccination and the advent of direct-acting antiviral drugs for HCV infection, NAFLD and associated conditions such as diabetes and obesity are emerging as major global risk factors for HCC. In view of the dismal prognosis of HCC patients, implementing preventive strategies would be an ideal approach to quell the incidence of the disease. Obvious interventions include advocating HBV vaccination in endemic regions, achieving HCV eradication with direct-acting antivirals, promoting healthy nutrition and weight reduction, improving diabetes control, and avoiding excessive alcohol consumption. Still, the implementation of these measures is not always feasible
State transfer in dissipative and dephasing environments
By diagonalization of a generalized superoperator for solving the master
equation, we investigated effects of dissipative and dephasing environments on
quantum state transfer, as well as entanglement distribution and creation in
spin networks. Our results revealed that under the condition of the same
decoherence rate , the detrimental effects of the dissipative
environment are more severe than that of the dephasing environment. Beside
this, the critical time at which the transfer fidelity and the
concurrence attain their maxima arrives at the asymptotic value
quickly as the spin chain length increases. The transfer
fidelity of an excitation at time is independent of when the system
subjects to dissipative environment, while it decreases as increases when
the system subjects to dephasing environment. The average fidelity displays
three different patterns corresponding to , and . For
each pattern, the average fidelity at time is independent of when the
system subjects to dissipative environment, and decreases as increases when
the system subjects to dephasing environment. The maximum concurrence also
decreases as increases, and when , it arrives at an
asymptotic value determined by the decoherence rate and the structure
of the spin network.Comment: 12 pages, 6 figure
Time-dependent Stochastic Modeling of Solar Active Region Energy
A time-dependent model for the energy of a flaring solar active region is
presented based on a stochastic jump-transition model (Wheatland and Glukhov
1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model
active region varies in time due to a prescribed (deterministic) rate of energy
input and prescribed (random) flare jumps downwards in energy. The model has
been shown to reproduce observed flare statistics, for specific
time-independent choices for the energy input and flare transition rates.
However, many solar active regions exhibit time variation in flare
productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010).
In this case a time-dependent model is needed. Time variation is incorporated
for two cases: 1. a step change in the rates of flare jumps; and 2. a step
change in the rate of energy supply to the system. Analytic arguments are
presented describing the qualitative behavior of the system in the two cases.
In each case the system adjusts by shifting to a new stationary state over a
relaxation time which is estimated analytically. The new model retains
flare-like event statistics. In each case the frequency-energy distribution is
a power law for flare energies less than a time-dependent rollover set by the
largest energy the system is likely to attain at a given time. For Case 1, the
model exhibits a double exponential waiting-time distribution, corresponding to
flaring at a constant mean rate during two intervals (before and after the step
change), if the average energy of the system is large. For Case 2 the
waiting-time distribution is a simple exponential, again provided the average
energy of the system is large. Monte Carlo simulations of Case~1 are presented
which confirm the analytic estimates. The simulation results provide a
qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure
Adhesion mechanics of graphene membranes
The interaction of graphene with neighboring materials and structures plays
an important role in its behavior, both scientifically and technologically. The
interactions are complicated due to the interplay between surface forces and
possibly nonlinear elastic behavior. Here we review recent experimental and
theoretical advances in the understanding of graphene adhesion. We organize our
discussion into experimental and theoretical efforts directed toward: graphene
conformation to a substrate, determination of adhesion energy, and applications
where graphene adhesion plays an important role. We conclude with a brief
prospectus outlining open issues.Comment: Review article to appear in special issue on graphene in Solid State
Communication
Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach
We use the Markov Chain Monte Carlo method to investigate a global
constraints on the modified Chaplygin gas (MCG) model as the unification of
dark matter and dark energy from the latest observational data: the Union2
dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the
cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the
cosmic microwave background (CMB) data. In a flat universe, the constraint
results for MCG model are,
()
,
()
,
()
,
()
, and ()
.Comment: 12 pages, 1figur
Special symplectic Lie groups and hypersymplectic Lie groups
A special symplectic Lie group is a triple such that
is a finite-dimensional real Lie group and is a left invariant
symplectic form on which is parallel with respect to a left invariant
affine structure . In this paper starting from a special symplectic Lie
group we show how to ``deform" the standard Lie group structure on the
(co)tangent bundle through the left invariant affine structure such
that the resulting Lie group admits families of left invariant hypersymplectic
structures and thus becomes a hypersymplectic Lie group. We consider the affine
cotangent extension problem and then introduce notions of post-affine structure
and post-left-symmetric algebra which is the underlying algebraic structure of
a special symplectic Lie algebra. Furthermore, we give a kind of double
extensions of special symplectic Lie groups in terms of post-left-symmetric
algebras.Comment: 32 page
miR-23~27~24 clusters control effector T cell differentiation and function
Coordinated repression of gene expression by evolutionarily conserved microRNA (miRNA) clusters and paralogs ensures that miRNAs efficiently exert their biological impact. Combining both loss- and gain-of-function genetic approaches, we show that the miR-23~27~24 clusters regulate multiple aspects of T cell biology, particularly helper T (Th) 2 immunity. Low expression of this miRNA family confers proper effector T cell function at both physiological and pathological settings. Further studies in T cells with exaggerated regulation by individual members of the miR-23~27~24 clusters revealed that miR-24 and miR-27 collaboratively limit Th2 responses through targeting IL-4 and GATA3 in both direct and indirect manners. Intriguingly, although overexpression of the entire miR-23 cluster also negatively impacts other Th lineages, enforced expression of miR-24, in contrast to miR-23 and miR-27, actually promotes the differentiation of Th1, Th17, and induced regulatory T cells, implying that under certain conditions, miRNA families can fine tune the biological effects of their regulation by having individual members antagonize rather than cooperate with each other. Together, our results identify a miRNA family with important immunological roles and suggest that tight regulation of miR-23~27~24 clusters in T cells is required to maintain optimal effector function and to prevent aberrant immune responses
- …